Preview

Фармакогенетика и фармакогеномика

Расширенный поиск

Значение полиморфизма в генах KCNJ11, ABCC8 и TCF7L2 для ответа на терапию основными группами пероральных сахароснижающих препаратов

https://doi.org/ 10.24411/2588-0527-2018-10002

Полный текст:

Содержание

Перейти к:

Аннотация

В обзоре представлена накопленная на настоящий момент научная информация о значении и принципах действия основных пероральных сахароснижающих препаратов в лечении сахарного диабета, и роли полиморфных вариантов в генах KCNJ11, ABCC8 и TCF7L2, исходно признанных ответственными за предрасположенность к заболеванию сахарным диабетом, в индивидуальном ответе на терапию пероральными сахароснижающими препаратами. Приведён обзор функций кодируемых указанными генами белков, охарактеризованы основные полиморфные варианты, представлены основные опубликованные научные исследования и обозначены направления для дальнейших научных изысканий.

Для цитирования:


Шорохова П.Б., Загородникова К.А., Баранов В.Л., Ворохобина Н.В. Значение полиморфизма в генах KCNJ11, ABCC8 и TCF7L2 для ответа на терапию основными группами пероральных сахароснижающих препаратов. Фармакогенетика и фармакогеномика. 2018;(1):9-14. https://doi.org/ 10.24411/2588-0527-2018-10002

For citation:


Shorokhova P.B., Zagorodnikova K.A., Baranov V.L., Vorokhobina N.V. The value polymorphism in gen KCNJ11, ABCC8 and TCF7L2 for response to therapy of the main oral hypoglycemic drugs. Pharmacogenetics and Pharmacogenomics. 2018;(1):9-14. (In Russ.) https://doi.org/ 10.24411/2588-0527-2018-10002

Список литературы

1. International Diabetes Federation (IDF). IDF Diabetes Atlas. 2017;8th edition: 7-11.

2. Аметов А.С. Сахарный диабет 2 типа. Проблемы и решения. - М.: ГЭОТАР-Медиа; 2017.

3. DeFronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009 Apr;58(4):773-795. DOI: 10.2337/db09-9028

4. Дедов И.И., Шестакова М.В., Аметов А.С. и др. Консенсус совета экспертов Российской ассоциации эндокринологов по инициации и интенсификации сахароснижающей терапии у больных сахарным диабетом 2 типа // Сахарный диабет. - 2011. - Т. 14. - № 4. - С. 6-17.

5. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. - 8-й выпуск. - М.: Уп ПРИНТ; 2017. Сахарный диабет. - 2017; - 20(1S). - С.1-112.

6. Российские клинические рекомендации. Эндокринология / Под ред. И.И. Дедова, Г.А. Мельниченко. - М.: ГЭОТАР-Медиа; 2016. - С. 531-556.

7. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes care. 2008;31:1-11.

8. Inzucchi SE, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015 Aug;38(8):e128-129. DOI: 10.2337/dc15-0812

9. Viollet B., Guigas B., Sanz Garcia N., et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012 Mar;122(6): 253-270. DOI: 10.1042/CS20110386

10. Bailey C. J., Wilcock C., Scarpello J. H. Metformin and the intestine. Diabetologia. 2008 Aug;51(8):1552-1553. DOI: 10.1007/s00125-008-1053-5

11. Madiraju AK, Erion DM, Rahimi Y., et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014 Jun 26;510(7506):542-546. DOI: 10.1038/nature13270

12. Prager R., Shernthaner G., Graf H. Effect of metformin on peripheral insulin sensitivity innon insulin dependent diabetes mellitus. Diabetes Metab. 1986;12(6):346-350.

13. Bailey CJ. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther. 2015 Aug;98(2):170-184. DOI: 10.1002/cpt.144

14. Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology Consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. EndocrPract. 2009 Sep-0ct;15(6):540-559. DOI: 10.4158/EP.15.6.540

15. Дедов И.И., Шестакова М.В., Аметов А.С. и др. Консенсус совета экспертов Российской ассоциации эндокринологов (РАЭ) по инициации и интенсификации сахароснижающей терапии СД 2 типа // Сахарный диабет. - 2011. - №1. - С. 95-105.

16. Вaggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131-2157. DOI: 10.1053/j.gastro.2007.03.054

17. Kim W., Egan J. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008 Dec;60(4):470-512. DOI: 10.1124/pr.108.000604

18. Perfetti R. The role of GLP-1 in the regulation of the islet cell mass. Medscape Diabet Endocrinol. 2004;6(2):134-138.

19. Gautier JF, Choukem SP, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in Type 2 diabetes. Diabetes Metab. 2008 Feb;34 Suppl 2:S65-72. DOI: 10.1016/S1262-3636(08)73397-4

20. Nauck M.A. Incretin-based therapies for Type 2 diabetes mellitus: properties, functions, and clinical implications. Am J. Med. 2011 Jan;124 (1 Suppl):S3-18. DOI: 10.1016/j.amjmed.2010.11.002

21. Weyer C., Bogardus C., Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin Invest. 1999 Sep;104(6):787-94. DOI: 10.1172/JCI7231

22. Клиническая фармакология: национальное руководство / Под ред. Ю.Б. Белоусова, В.Г. Кукеса, В.К. Лепахина, В.И. Петрова. - М.: ГЭОТАР-Медиа; 2009.

23. Рациональная фармакотерапия заболеваний эндокринной системы и нарушений обмена веществ. 2-е изд. / Под общ. ред. И.И. Дедова, Г.А. Мельниченко. - М.: ГЭОТАР-Медиа; 2013.

24. Серединин С.Б. Лекции по фармакогенетике. - М.: Издательство МИА; 2004. - С. 12-48.

25. Сычев Д.А. Фармакогенетическое тестирование: клиническая интерпретация результатов. - М.: 2011. - С. 8-15.

26. Клиническая фармакогенетика: учебное пособие / Под ред. В.Г. Кукеса, Н.П. Бочкова. - М.: ГЭОТАР-Медиа; 2007.

27. Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate - sensitive potassium channels. Endocr Rev. 1999 Apr;20(2):101-135. DOI: 10.1210/edrv.20.2.0361

28. Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. ProgBiophys Mol Biol. 2003 Feb;81(2):133-176.

29. Flanagan SE, Clauin S., Bellanne-Chantelot C., et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009 Feb;30(2):170-180. DOI: 10.1002/humu.20838

30. James C., Kapoor RR, Ismail D., et al. The genetic basis of congenital hyperinsulinism. J. Med Genet. 2009 May;46(5):289-299. DOI: 10.1136/jmg.2008.064337

31. Thomas P., Ye Y., Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet. 1996 Nov;5(11):1809-1812.

32. Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl J. Med. 2004 Apr 29;350(18):1838-1849. DOI: 10.1056/NEJMoa032922

33. Florez JC, Jablonski KA, Kahn SE, et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes. 2007 Feb;56(2):531-536. DOI: 10.2337/db06-0966

34. Lang VY, Fatehi M., Light PE. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Pharmacogenet Genomics. 2012 Mar;22(3):206- 214. DOI: 10.1097/FPC.0b013e32835001e7

35. Fatehi M., Raja M., Carter C., et al. The ATP-sensitive K. (+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity. Diabetes. 2012 Jan;61(1):241-249. DOI: 10.2337/db11-0371

36. Florez JC, Hirschhorn J., Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet. 2003;4:257-291. DOI: 10.1146/annurev.genom.4.070802.110436

37. Gloyn AL, Hashim Y., Ashcroft SJ, et al. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med. 2001 Mar;18(3):206-212.

38. Nikolac N., Simundic AM, Katalinic D., et al. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res. 2009 Jul;40(5):387-392. DOI: 10.1016/j.arcmed.2009.06.006

39. Ragia G., Tavridou A., Petridis I., et al. Association of KCNJ11E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract. 2012 Oct;98(1):119-124. DOI: 10.1016/j.diabres.2012.04.017

40. Sato R., Watanabe H., Genma R., et al. ABCC8 polymorphism (Ser1369Ala): influence on severe hypoglycemia due to sulfonylureas. Pharmacogenomics. 2010 Dec;11(12):1743-1750. DOI: 10.2217/pgs.10.135

41. Li Q., Chen M., Zhang R., et al. KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2014 Oct;41(10):748-754. DOI: 10.1111/1440-1681

42. Sesti G., Laratta E., Cardellini M., et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5’-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J. Clin Endocrinol Metab. 2006 Jun;91(6):2334-2339. DOI: 10.1210/jc.2005-2323

43. Holstein A., Hahn M., Stumvoll M., et al. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm Metab Res. 2009 May;41(5):387-390. DOI: 10.1055/s-0029-1192019

44. El-Sisi AE, Hegazy sK, Metwally SS, et. al. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2011 Aug;2(4):155-164. DOI: 10.1177/2042018811415985

45. Feng Y., Mao G., Ren X., et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care. 2008 Oct;31(10):1939-1944. DOI: 10.2337/dc07-2248

46. Zhang H., Liu X., Kuang H., et al. Association of sulfonylurea receptor 1genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract. 2007 Jul;77(1):58-61. DOI: 10.1016/j.diabres.2006.10.021

47. Jamaluddin JL, Huri HZ, Vethakkan SR. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes mellitus. Pharmacogenomics. 2016 Jun;17(8):867-881. DOI: 10.2217/pgs-2016-0010

48. Chiang YT, Ip W., Jin T. The role of the Wnt signaling pathway in incretin hormone production and function. Front Physiol. 2012 Jul 12;3:273. DOI: 10.3389/fphys.2012.00273

49. Xiong X., Shao W., Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic ß-cells: the involvement of the Wnt signaling pathway effector ß-catenin. Islets. 2012 Nov-Dec;4(6):359-365. DOI: 10.4161/isl.23345

50. Peng S., Zhu Y., L. B., et al. TCF7L2 gene polymorphisms and type 2 diabetes risk: a comprehensive and updated metaanalysis involving 121174 subjects. Mutagenesis. 2013 Jan;28(1):25-37. DOI: 10.1093/mutage/ges048

51. Kirchhoff K., Machicao F., Haupt A., et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008; 51: 597-601.

52. Srinivasan S., Kaur V., Chamarthi B., et al. TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care. 2018 Mar;41(3):554-561. DOI: 10.2337/dc17-1386

53. Махрова И.А., Глотов О.С., Глебова М.А. и др. Эффективность применения метформина при ожирении и метаболическом синдроме у детей и подростков в зависимости от полиморфизма гена TCF7L2 // Медицинская генетика. - 2012. - 4(118). - С. 29-35.

54. Pearson ER, Donnelly LA, Kimber C., et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007 Aug;56(8):2178-2182. DOI: 10.2337/db07-0440

55. Zimdahl H., Ittrich C., Graefe-Mody U., et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia. 2014 Sep;57(9):1869-1875. DOI: 10.1007/s00125-014-3276-y


Об авторах

Полина Борисовна Шорохова
ФГБОУ ВО СЗГМУ им. И.И. Мечникова Минздрава России
Россия


Ксения Александровна Загородникова
ФГБОУ ВО СЗГМУ им. И.И. Мечникова Минздрава России
Россия


Виталий Леонидович Баранов
ФГБОУ ВО СЗГМУ им. И.И. Мечникова Минздрава России
Россия


Наталья Владимировна Ворохобина
ФГБОУ ВО СЗГМУ им. И.И. Мечникова Минздрава России
Россия


Рецензия

Для цитирования:


Шорохова П.Б., Загородникова К.А., Баранов В.Л., Ворохобина Н.В. Значение полиморфизма в генах KCNJ11, ABCC8 и TCF7L2 для ответа на терапию основными группами пероральных сахароснижающих препаратов. Фармакогенетика и фармакогеномика. 2018;(1):9-14. https://doi.org/ 10.24411/2588-0527-2018-10002

For citation:


Shorokhova P.B., Zagorodnikova K.A., Baranov V.L., Vorokhobina N.V. The value polymorphism in gen KCNJ11, ABCC8 and TCF7L2 for response to therapy of the main oral hypoglycemic drugs. Pharmacogenetics and Pharmacogenomics. 2018;(1):9-14. (In Russ.) https://doi.org/ 10.24411/2588-0527-2018-10002

Просмотров: 468


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2686-8849 (Print)
ISSN 2588-0527 (Online)