Prevalence of CYP3A4*22 (rs35599367) C>T and CYP3A5*3 (rs776746) A>G gene polymorphisms among Yakuts and Russians with drug-resistant pulmonary tuberculosis
https://doi.org/10.37489/2588-0527-2025-3-34-44
EDN: WWFTEW
Abstract
Background. Treatment of drug-resistant tuberculosis is associated with numerous medical and societal problems; therefore, the search continues for
measures to improve treatment outcomes through the development of new drugs and chemotherapy regimens. Bedaquiline metabolized by the cytochrome P450 isoenzyme CYP3A4. CYP3A4 and CYP3A5 polymorphisms can lead to variability in bedaquiline plasma concentrations, which in turn affects treatment efficacy and safety. Currently, there are no data on the prevalence of CYP3A4*22 and CYP3A5*3 gene polymorphic variants among Yakuts and Russians with tuberculosis.
Objective. To study the carrier frequency of CYP3A4*22 (rs35599367) C>T and CYP3A5*3 (rs776746) A>G gene polymorphisms among Yakuts and Russians with drug-resistant tuberculosis compared to the normal variability of the studied gene allelic variants in East Asian and European populations.
Methods. A cross-sectional comprehensive study was conducted on 255 patients of Yakut and Russian ethnicity with drug-resistant pulmonary tuberculosis. CYP3A4*22 (rs35599367) C>T and CYP3A5*3 (rs776746) A>G polymorphisms were determined by real-time polymerase chain reaction. For comparative analysis, data on the carrier frequency of CYP3A4*22 and CYP3A5*3 allelic variants in East Asian and European populations were used.
Results. In patients with drug-resistant pulmonary tuberculosis, the frequency of the T allele of the CYP3A4*22 gene was significantly lower in the Siberian group compared to the frequency in the Eurasian group (p = 0.003). The wild-type genotype (CC) CYP3A4*22 was significantly more common in the Siberian group of patients than in the Eurasian group, whereas the heterozygous genotype (CT) was less represented in the Siberian population (p = 0.003). The AA genotype of CYP3A5*3 was less common in the Siberian group relative to its frequency in the Eurasian group (p = 0.021), the heterozygous AG genotype was much less frequently detected in the Siberian population of patients (p < 0.001), and the GG genotype predominated in the Siberian group and was less frequently determined in the Eurasian population (p < 0.001). The frequencies of alleles and genotypes of the CYP3A5*3 gene in patients with drug-resistant pulmonary tuberculosis did not differ between the Yakut and Russian populations. The distribution of CYP3A5*3 alleles and genotypes in the Russian population was the same as in the general European profile (p > 0.05). Differences were found between Yakuts and East Asians for all analyzed parameters (p < 0.05).
Conclusion. Features of the distribution of CYP3A4*22 and CYP3A5*3 gene allelic variants affect the rate of drug metabolism among patients of Yakut
and Russian ethnicity. Differences in allelic variants and genotypes of CYP3A4 and CYP3A5 in Russian and Yakut populations with drug-resistant pulmonary tuberculosis can significantly modify clinical efficacy and the development of adverse reactions during bedaquiline treatment, as the CYP3A isoenzyme of cytochrome P450 plays a primary role in its oxidation.
Keywords
About the Authors
Natalia M. KrasnovaRussian Federation
Natalia M. Krasnova — Cand. Sci. (Med.), Associate Professor,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Vyacheslav M. Nikolaev
Russian Federation
Vyacheslav M. Nikolaev — Cand. Sci. (Biol.), Senior Researcher,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Alexandra S. Asekritova
Russian Federation
Alexandra S. Asekritova — Cand. Sci. (Med.), Associate Professor; Head of the Hospital,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Nadezhda E. Evdokimova
Russian Federation
Nadezhda E. Evdokimova — Phthisiologist, Head of Department,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Olga V. Tatarinova
Russian Federation
Olga V. Tatarinova — Dr. Sci. (Med.), Chief Physician of the Hospital; Senior Researcher,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Egor S. Prokopyev
Russian Federation
Egor S. Prokopyev — Director,
Yakutsk.
Competing Interests:
Аuthors declare no conflict of interest.
Alexander I. Vengerovsky
Russian Federation
Alexander I. Vengerovsky — Dr. Sci. (Med.), Professor, Honored Worker of Higher Education of the Russian Federation, Professor of the Department of Pharmacology,
Tomsk.
Competing Interests:
Аuthors declare no conflict of interest.
Natalia P. Denisenko
Russian Federation
Natalia P. Denisenko — Cand. Sci. (Med.), Associate Professor, Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal,
Moscow.
Competing Interests:
Аuthors declare no conflict of interest.
Dmitry A. Sychev
Russian Federation
Dmitry A. Sychev — Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal, Acting Rector of Russian Medical Academy of Continuous Professional Education,
Moscow.
Competing Interests:
Аuthors declare no conflict of interest.
References
1. Salari N, Kanjoori AH, Hosseinian-Far A, et al. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infect DisPoverty. 2023 May 25;12(1):57. doi: 10.1186/s40249-023-01107-x.
2. Nguyen TV, Cao TB, Akkerman OW, et al. Bedaquiline as part of combination therapy in adults with pulmonary multi-drug-resistant tuberculosis. Expert Rev Clin Pharmacol. 2016 Aug;9(8):1025-37. doi: 10.1080/17512433.2016.1200462.
3. Кудлай Д.А. Разработка и внедрение в клиническую практику нового фармакологического вещества из класса диарилхинолонов. Экспериментальная и клиническая фармакология. 2021;84(3):41-47. [Kudlay DA. Development and implementation of new pharmacological agent of the diarylquinoline class in clinical practice. Experimental and Clinical Pharmacology. 2021;84(3):41-47. (In Russ.)]. DOI: 10.30906/0869-2092-2021-84-3-41-4710.14341/probl20135943-10.
4. Туберкулёз у взрослых. Клинические рекомендации. Министерство здравоохранения Российской Федерации; 2024. [Tuberculosis in adults. Clinical guidelines. Ministry of Health of the Russian Federation; 2024. (In Russ).].
5. Wang MG, Wu SQ, He JQ. Efficacy of bedaquiline in the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2021 Sep 17;21(1):970. doi: 10.1186/s12879-021-06666-8.
6. Starshinova A, Dovgalyk I, Belyaeva E, et al. Efficacy of Tuberculosis Treatment in Patients with Drug-Resistant Tuberculosis with the Use of Bedaquiline: The Experience of the Russian Federation. Antibiotics (Basel). 2022 Nov 14;11(11):1622. doi: 10.3390/antibiotics11111622.
7. Ur Rehman O, Fatima E, Ali A, et al. Efficacy and safety of bedaquiline containing regimens in patients of drug-resistant tuberculosis: An updated systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis. 2023 Dec 1;34:100405. doi: 10.1016/j.jctube.2023.100405.
8. Mallick JS, Nair P, Abbew ET, et al. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist. 2022 Mar 29;4(2):dlac029. doi: 10.1093/jacamr/dlac029.
9. Алгазина В.В., Смирнова Т.Г., Романов В.В., Эргешов А.Э. Частота встречаемости устойчивости M. tuberculosis к линезолиду и бедаквилину у пациентов за период 2011–2022 гг. Туберкулез и социально значимые заболевания. 2024;12(3):20-25. [Algazina V.V., Smirnova T.G., Romanov V.V., Ergeshov A.E. The incidence of M. tuberculosis resistance to linezolid and bedaquiline in patients for the period 2011-2022. Tuberculosis and socially significant diseases. 2024;12(3):20-25. (In Russ.)]. doi: 10.54921/2413-0346-2024-12-3-20-25
10. Shaw ES, Stoker NG, Potter JL, et al. Bedaquiline: what might the future hold? Lancet Microbe. 2024 Dec;5(12):100909. doi: 10.1016/S2666-5247(24)00149-6.
11. Lan Z, Ahmad N, Baghaei P, et al; Collaborative Group for the MetaAnalysis of Individual Patient Data in MDR-TB treatment 2017. Drugassociated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020 Apr;8(4): 383-394. doi: 10.1016/S2213-2600(20)30047-3.
12. Тюлькова Т.Е., Ткачук А.П., Акмалова К.А., и др. Генетический полиморфизм, влияющий на метаболизм противотуберкулёзных препаратов. Фармакогенетика и фармакогеномика. 2024;(2):37-45. Doi: 10.37489/2588-0527-2024-2-37-45. EDN: FMIQSQ [Tyulkova T.E., Tkachuk A.P., Akmalova K.A., et al. Genetic polymorphisms affect the metabolism of antituberculosis drugs. Pharmacogenetics and Pharmacogenomics. 2024;(2): 37-45. (In Russ.)].
13. Elens L, van Gelder T, Hesselink DA, et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013 Jan;14(1):47-62. doi: 10.2217/pgs.12.187.
14. Сычёв Д.А., Отделенов В.А., Денисенко Н.П., Смирнов В.В. Изучение активности изоферментов цитохрома Р450 для прогнозирования межлекарственных взаимодействий лекарственных средств в условиях полипрагмазии. Фармакогенетика и фармакогеномика. 2016;2:4-11. [Sychev DA, Otdelenov VA, Denisenko NP, Smirnov VV. The study of the activity of isoenzymes of cytochrome P450 for the prediction of drug-drug interactions of medicines in terms of polypharmacy. Pharmacogenetics and Pharmacogenomics. 2016;(2):4-11. (In Russ.)].
15. Wrighton SA, Schuetz EG, Thummel KE, et al. The human CYP3A subfamily: practical considerations. Drug Metab Rev. 2000 AugNov;32(3-4):339-61. doi: 10.1081/dmr-100102338.
16. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002 Dec;3(6):561-97. doi: 10.2174/1389200023337054.
17. Иващенко Д.В., Рыжикова К.А., Созаева Ж.А., и др. Влияние полиморфизмов генов CYP3A5, CYP2C9, CYP2C19 и CYP2D6 на профиль безопасности феназепама при синдроме отмены алкоголя. Вестник РАМН. 2018;73(3):206–214. [Ivashchenko DV, Ryzhikova KA, Sozaeva ZhA, et al. Impact of CYP3A5, CYP2C9, CYP2C19, and CYP2D6 Polymorphisms on Phenazepam Safety in Patients with Alcohol Withdrawal Syndrome. Annals of the Russian Academy of Medical Sciences. 2018;73(3): 206–214. (In Russ.)]. DOI:10.15690/vramn989.
18. Okubo M, Murayama N, Shimizu M, et al. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci. 2013;38(3): 349-54. doi: 10.2131/jts.38.349.
19. Elens L, van Gelder T, Hesselink DA, et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013 Jan;14(1):47-62. doi: 10.2217/pgs.12.187.
20. Scheibner A, Remmel R, Schladt D, et al. Tacrolimus Elimination in Four Patients With a CYP3A5*3/*3 CYP3A4*22/*22 Genotype Combination. Pharmacotherapy. 2018 Jul;38(7):e46-e52. doi: 10.1002/phar.2131.
21. Suarez-Kurtz G, Struchiner CJ. Pharmacogenomic implications of the differential distribution of CYP3A5 metabolic phenotypes among Latin American populations. Pharmacogenomics. 2024 Mar;25(4):187-195. doi: 10.2217/pgs-2024-0009.
22. Adler G, Uzar I, Valjevac A, et al. Genetic diversity of CYP3A5 and ABCB1 variants in East-Central and South European populations. Ann Hum Biol. 2022 Jun;49(3-4):210-215. doi: 10.1080/03014460.2022.2100477.
23. Suarez-Kurtz G, Vargens DD, Santoro AB, et al. Global pharmacogenomics: distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population. PLoS One. 2014 Jan 10;9(1):e83472. doi: 10.1371/journal.pone.0083472.
24. Adler G, et al. Landscape of CYP3A5 Variants in Central-Eastern and South European Populations. In: Badnjevic A., Škrbić R., Gurbeta Pokvić L. (eds) CMBEBIH 2019. CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. Doi: 10.1007/978-3-030-17971-7_78.
25. Wang HP, Xie JJ, Zhang ZY, et al. [Study on polymorphisms of CYP3A5 gene and their clinical role]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005 Aug;22(4):423-6. Chinese.
26. Genvigir FDV, Campos-Salazar AB, Felipe CR, et al. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimusbased therapy. Pharmacogenomics. 2020 Jan;21(1):7-21. doi: 10.2217/pgs2019-0120.
27. Haas DW, Abdelwahab MT, van Beek SW, et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis. 2022 Aug 12;226(1):147-156. doi: 10.1093/infdis/jiac024.
Review
For citations:
Krasnova N.M., Nikolaev V.M., Asekritova A.S., Evdokimova N.E., Tatarinova O.V., Prokopyev E.S., Vengerovsky A.I., Denisenko N.P., Sychev D.A. Prevalence of CYP3A4*22 (rs35599367) C>T and CYP3A5*3 (rs776746) A>G gene polymorphisms among Yakuts and Russians with drug-resistant pulmonary tuberculosis. Pharmacogenetics and Pharmacogenomics. 2025;(3):34-44. (In Russ.) https://doi.org/10.37489/2588-0527-2025-3-34-44. EDN: WWFTEW
JATS XML



































