Lipid-lowering efficacy of atorvastatin in patients with CYP3A4 gene allele mutation
https://doi.org/10.37489/2588-0527-2025-3-4-12
EDN: OEHIUF
Abstract
Relevance. Pharmacogenetics is one of the leading areas of personalized medicine, allowing the prediction of the effectiveness and safety of medicines
in a particular patient. This study analyzed the presence of CYP3A4 gene allele mutations and their relationship with the effectiveness of therapy.
Objective. This study aimed to evaluate the effect of the genetic polymorphism A/G (rs2740574) of the CYP3A4 gene, as well as polymorphisms CYP3A4_2 Leu293Pro (rs28371759) and CYP3A4 Phe189Ser (rs4987161) in patients with coronary heart disease on the lipid-lowering efficacy of atorvastatin in real-world practice.
Materials and methods. This study included 96 patients with coronary artery disease who received atorvastatin therapy. Molecular genetic analysis of CYP3A4 gene polymorphisms was performed using real-time polymerase chain reaction. Statistical data processing was performed using STATA 14 software.
Results. The frequency of the G allele (rs2740574) in the studied sample was 8.3 %, which differed significantly from that of the all-Russian (4 %, p = 0.0095) and European (3.63 %, p = 0.0005) populations. The frequency of the minor C allele for the CYP3A4_2 Leu293Pro (rs28371759) polymorphism was 0.5%, which was significantly different from the global and European frequencies (p < 0.001). Polymorphism CYP3A4 Phe189Ser (rs4987161) was not detected in the sample. Carriers of the G allele (rs2740574) (n = 15) showed a significant decrease in total cholesterol (from 5.38 ± 1.49 to 3.23 ± 0.96 mmol/l, p = 0.0019) and LDL-C (from 3.54 ± 1.17 to 1.58 ± 0.62 mmol/l, p = 0.0004) during atorvastatin therapy. The effect of other polymorphisms on the lipid profile could not be assessed due to their low prevalence.
Conclusion. Unique frequencies of CYP3A4 gene alleles, which differ from the reference populations, have been identified in patients with coronary heart disease in Arkhangelsk. The presence of the G allele (rs2740574) is associated with a more pronounced lipid-lowering response to atorvastatin therapy. The findings highlight the importance of pharmacogenetic studies for the personalization of statin therapy.
About the Authors
Nadezhda A. VorobyevaRussian Federation
Nadezhda A. Vorobyeva — PhD, Dr. Sci. (Med), Professor, Head of the Department of Clinical Pharmacology and Pharmacotherapy,
Arkhangelsk.
Competing Interests:
The authors declare no conflict of interest.
Daria D. Komissarova
Russian Federation
Daria D. Komissarova — assistant at the Department of Clinical Pharmacology and Pharmacotherapy,
Arkhangelsk.
Competing Interests:
The authors declare no conflict of interest.
Alexandra S. Vorontsova
Russian Federation
Alexandra S. Vorontsova — assistant at the Department of Clinical Pharmacology and Pharmacotherapy,
Arkhangelsk.
Competing Interests:
The authors declare no conflict of interest.
Tatiana V. Ponomareva
Russian Federation
Tatiana V. Ponomareva — student,
Arkhangelsk.
Competing Interests:
The authors declare no conflict of interest.
References
1. Данилов А.И., Козлов С.Н., Евсеев А.В. Статины как компонент гиполипидемической терапии. Обзоры по клинической фармакологии и лекарственной терапии. 2019;17(4):79-82. [Danilov AI, Kozlov SN, Evseev AV. Statins as a component of lipid-lowering therapy. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(4):79-82. (In Russ.)]. doi: 10.7816/RCF17479-82
2. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021 Jul 1;42(25):2439-2454. doi: 10.1093/eurheartj/ehab309.
3. Endo Y, Fujita M, Ikewaki K. HDL Functions-Current Status and Future Perspectives. Biomolecules. 2023 Jan 4;13(1):105. doi: 10.3390/biom13010105.
4. Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007 Feb 7; 297(5):499-508. doi: 10.1001/jama.297.5.499.
5. West of Scotland Coronary Prevention Study: identification of high-risk groups and comparison with other cardiovascular intervention trials. Lancet. 1996 Nov 16;348(9038):1339-42.
6. Aronow HD. The Myocardial Ischemia Reduction with Acute Cholesterol Lowering trial: MIRACuLous or not, it's time to change current practice. Curr Control Trials Cardiovasc Med. 2002 Jan 7;3(1):3. doi: 10.1186/1468-6708-3-3.
7. MRC/BHF Heart Protection Study of cholesterol-lowering therapy and of antioxidant vitamin supplementation in a wide range of patients at increased risk of coronary heart disease death: early safety and efficacy experience. Eur Heart J. 1999 May;20(10):725-41. doi: 10.1053/euhj.1998.1350.
8. Xie M, Martin SS, Turchin A. Reasons for non-acceptance of statin therapy by patients at high cardiovascular risk. Sci Rep. 2025 May 16;15(1):17014. doi: 10.1038/s41598-025-01930-2.
9. Сычев Д.А., Шуев Г.Н., Торбенков Е.С., Адриянова М.А. Персонализированная медицина: взгляд клинического фармаколога. Consilium Medicum. 2017;19(1):61-68. [Sychev DA, Shuev GN, Torbenkov ES, Adrijanova MА. Personalized medicine: clinical pharmacologist’s opinion. Consilium Medicum. 2017;19(1):61-68. (In Russ.)].
10. Zineh I. Pharmacogenetics of response to statins. Curr Atheroscler Rep. 2007 Sep;9(3):187-94. doi: 10.1007/s11883-007-0018-3.
11. Maslub MG, Radwan MA, Daud NAA, Sha'aban A. Association between CYP3A4/CYP3A5 genetic polymorphisms and treatment outcomes of atorvastatin worldwide: is there enough research on the Egyptian population? Eur J Med Res. 2023 Sep 27;28(1):381. doi: 10.1186/s40001023-01038-1.
12. Rosales A, Alvear M, Cuevas A, et al. Identification of pharmacogenetic predictors of lipid-lowering response to atorvastatin in Chilean subjects with hypercholesterolemia. Clin Chim Acta. 2012 Feb 18;413(3-4):495-501. doi: 10.1016/j.cca.2011.11.003.
13. Bailey KM, Romaine SP, Jackson BM, et al; SPACE ROCKET Trial Group. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet. 2010 Jun;3(3):276-85. doi: 10.1161/CIRCGENETICS.109.898502.
14. NCBI. dbSNP: rs2740574 [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/snp/rs2740574.
15. Мустафина О.Е., Туктарова И.А., Каримов Д.Д., и др. Полиморфизм генов CYР2D6, CYP3A5 и CYP3A4 в популяциях русских, татар и башкир. Генетика. 2015;51(1):109-119. [Mustafina OE, Tuktarova IA, Karimov DD, et al. CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. Genetika. 2015;51(1): 109-119. (In Russ.)]. doi: 10.7868/S0016675815010087.
16. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003 Aug;59(4):303-12. doi: 10.1007/s00228-003-0606-2.
17. Мирзаев К.Б., Федоринов Д.С., Иващенко Д.В., Сычев Д.А. Мультиэтнический анализ кардиологических фармакогенетических маркеров генов цитохрома Р450 и мембранных транспортеров в российской популяции. Рациональная Фармакотерапия в Кардиологии. 2019;15(3):393-406. [Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome p450 and Membrane Transporters Genes in the Russian Population. Rational Pharmacotherapy in Cardiology. 2019;15(3):393-406. (In Russ.)]. doi: 10.20996/1819-6446-2019-15-3-393-406.
18. Klein K, Thomas M, Winter S, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012 Jun;91(6):1044-52. doi: 10.1038/clpt.2011.336.
19. Kivistö KT, Niemi M, Schaeffeler E, et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics. 2004 Aug;14(8):523-5. doi: 10.1097/01.fpc.0000114762.78957.a5.
20. Леонова М.В., Гайсенок О.В., Леонов А.С. Фармакогенетика статинов: роль полиморфизмов метаболизирующих ферментов и транспортеров. Consilium Medicum. 2018; 20(10):20-28. [Leonova MV, Gaysenok OV, Leonov AS. Statins pharmacogenetics: metabolizing enzymes and transporters polymorphisms role. Consilium Medicum. 2018;20(10):2028. (In Russ.)]. doi: 10.26442/2075-1753_2018.10.20-28.
21. Maslub MG, Daud NAA, Radwan MA, et al. CYP3A4*1B and CYP3A5*3 SNPs significantly impact the response of Egyptian candidates to high-intensity statin therapy to atorvastatin. Eur J Med Res. 2024 Nov 10;29(1):539. doi: 10.1186/s40001-024-02109-7.
22. Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol. 2020 Sep;16(9):809-822. doi: 10.1080/17425255.2020.1801634.
23. Wilke RA, Ramsey LB, Johnson SG, et al; Clinical Pharmacogenomics Implementation Consortium (CPIC). The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatininduced myopathy. Clin Pharmacol Ther. 2012 Jul;92(1):112-7. doi: 10.1038/clpt.2012.57.
24. Kondža M, Bojić M, Tomić I, et al. Characterization of the CYP3A4 Enzyme Inhibition Potential of Selected Flavonoids. Molecules. 2021 May 19;26(10):3018. doi: 10.3390/molecules26103018.
25. Chuma M, Nakamoto A, Bando T, et al. Association Between Statin Use and Daptomycin-related Musculoskeletal Adverse Events: A Mixed Approach Combining a Meta-analysis and a Disproportionality Analysis. Clin Infect Dis. 2022 Oct 12;75(8):1416-1422. doi: 10.1093/cid/ciac128.
Review
For citations:
Vorobyeva N.A., Komissarova D.D., Vorontsova A.S., Ponomareva T.V. Lipid-lowering efficacy of atorvastatin in patients with CYP3A4 gene allele mutation. Pharmacogenetics and Pharmacogenomics. 2025;(3):4-12. (In Russ.) https://doi.org/10.37489/2588-0527-2025-3-4-12. EDN: OEHIUF
JATS XML



































