Pharmacogenetic aspects of safety of high-dose methotrexate therapy for acute lymphoblastic leukemia in children
https://doi.org/10.37489/2588-0527-2025-2-14-22
EDN: JADVES
Abstract
Background. Methotrexate (MTX) in high doses (1–5 g/m2) is a key component of treatment protocols for acute lymphoblastic leukemia (ALL) in children. Interindividual variability in MTX toxicity is a crucial area of research aimed at enhancing the safety of therapy while maintaining its effectiveness.
Objective. To evaluate the role of polymorphisms of genes ABCB1 (C3435T, C1236T, 2677G>T/A, rs4148738c>T), SLCO1B1 T521C on the safety profile of methotrexate in children with ALL.
Materials and methods. The study is involved 124 patients with a confirmed diagnosis of ALL (C91.0 according to ICD-10) who underwent high-dose methotrexate treatment (greater than 1 g/m2). The severity of adverse reactions (ARs) was assessed using laboratory methods based on the National Cancer Institute's toxicity criteria (CTCAE v5.0 2018). The carriage of polymorphic variants was determined using allele-specific polymerase chain reaction (PCR) in real time. The results were statistically analyzed using the SPSS Statistics 26.0 software (USA).
Results. The safety analysis of high-dose MTX therapy revealed that the ABCB1 1236C>T polymorphism is a significant predictor of oropharyngeal mucositis during MTX treatment, with a higher risk for CC homozygotes. Patients with the TT genotype of the SLCO1B1 T521C rs4149056 gene have a 2.7-fold increased risk of severe infectious complications, while patients with the TT genotype of the ABCB1 C3435T gene have an elevated risk of nephrotoxicity (p = 0.035, OR: 8.3 (95 % CI: 0.83–82.2) and neurotoxicity (p = 0.041, OR: 2.3 (95 % CI: 1.02–5.12).
Conclusion. The results of the safety analysis of high-dose MTX therapy indicate the need for comprehensive pharmacogenetic testing before implementing this treatment in clinical practice.
About the Authors
O. D. GurievaRussian Federation
Oksana D. Gurieva — Pediatric oncologist of the Department of Pediatric Oncology and Hematology (Hemoblastosis Chemotherapy) No. 1 of the Research Institute of Pediatric Oncology and Hematology N.N. Blokhin NMRCO.
Moscow
Competing Interests:
The authors declare no conflict of interest
T. T. Valiev
Russian Federation
Timur T. Valiev — PhD, Dr. Sci. (Med.), Professor, Head of the Department of Pediatric Oncology and Hematology (chemotherapy for hemoblastoses) No. 1 of the Research Institute of Pediatric Oncology and Hematology N.N. Blokhin NMRCO.
Moscow
Competing Interests:
The authors declare no conflict of interest
M. I. Savelyeva
Russian Federation
Marina I. Savelyeva — PhD, Dr. Sci. (Med.), Professor, Professor of the Department of Therapy named EN Dormidontova, Yaroslavl State Medical University.
Yaroslavl
Competing Interests:
The authors declare no conflict of interest
References
1. Valiev TT, Shervashidze MA, Osipova IV, et al. Pediatric acute lymphoblastic leukemia: multicenter study of the treatment by the protocol ALL IC-BFM 2002. Russian Journal of Pediatric Hematology and Oncology. 2022;9(3):32-41. (In Russ.). doi: 10.21682/2311-1267-2022-9-3-32-41.
2. Brown P, Inaba H, Annesley C, et al. Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020 Jan;18(1):81-112. doi: 10.6004/jnccn.2020.0001.
3. Mei L, Ontiveros EP, Griffiths EA, et al. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev. 2015 Jul;29(4):243-9. doi: 10.1016/j.blre.2015.01.001.
4. Stocco G, Franca R, Verzegnassi F, et al. Pharmacogenomic approaches for tailored anti-leukemic therapy in children. Curr Med Chem. 2013;20(17):2237-53. doi: 10.2174/0929867311320170008.
5. Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015 Jun 25;125(26):3988-95. doi: 10.1182/blood-2014-12-580001.
6. Maamari D, El-Khoury H, Saifi O, et al. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med. 2020 Aug 12;13:295-317. doi: 10.2147/PGPM.S239602.
7. Rahmayanti SU, Amalia R, Rusdiana T. Systematic review: genetic polymorphisms in the pharmacokinetics of high-dose methotrexate in pediatric acute lymphoblastic leukemia patients. Cancer Chemother Pharmacol. 2024 Aug;94(2):141-155. doi: 10.1007/s00280-024-04694-0.
8. Gurieva OD, Valiev TT, Savelyeva MI, Varfolomeeva SR. Results of therapy of acute lymphoblastic leukemia in children depending on the mutational status of the ABCB1 gene. Pharmateca. 2024;31(7):66-73. (In Russ.) doi: 10.18565/pharmateca.2024.7.66-73.
9. Gurieva OD, Savelyeva MI, Valiev TT, et al. Pharmacogenetic aspects of efficacy and safety of methotrexate treatment in pediatric acute lymphoblastic leukemia. Drug Metab Pers Ther. 2023 Dec 14;38(4):349-357. doi: 10.1515/dmpt-2023-0079.
10. Tanaka Y. [Pharmacogenomics in hematological malignancy]. Rinsho Ketsueki. 2022;63(10):1353-1362. Japanese. doi: 10.11406/rinketsu.63.1353. PMID: 36351640.
11. Song Z, Hu Y, Liu S, et al. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol. 2021 Oct 21;12:757464. doi: 10.3389/fphar.2021.757464.
12. Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: Relationship between plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci. 2020 Jun;23(6):800-809. doi: 10.22038/ijbms.2020.41754.9858.
13. Yan X, Zhang N, Wang G, Wang J. Association between ABCB1 C3435 T polymorphismand methotrexate-related toxicity in pediatric acute lymphoblastic leukemia: a meta-analysis. Hematology. 2025 Dec;30(1):2469373. doi: 10.1080/16078454.2025.2469373.
14. Baba SM, Pandith AA, Shah ZA, et al. Impact of ABCB1 Gene (C3435T/A2677G) Polymorphic Sequence Variations on the Outcome of Patients with Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia in Kashmiri Population: A Case-Control Study. Indian J Hematol Blood Transfus. 2021 Jan;37(1):21-29. doi: 10.1007/s12288-020-01289-6.
15. Guo Q, Sun JL, Li R, Li X. Involvement of the ABCB1 C3435T Variant but Not the MTHFR C677T or MTHFR A1298C Variant in HighDose Methotrexate-Induced Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients in China. Int J Gen Med. 2024 Mar 27;17:1221-1231. doi: 10.2147/IJGM.S453394.
16. Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013 Feb 7;121(6):898-904. doi: 10.1182/blood-2012-08-452839.
17. Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013 Jun 27; 121(26):5145-53. doi: 10.1182/blood-2013-01-480335.
Review
For citations:
Gurieva O.D., Valiev T.T., Savelyeva M.I. Pharmacogenetic aspects of safety of high-dose methotrexate therapy for acute lymphoblastic leukemia in children. Pharmacogenetics and Pharmacogenomics. 2025;(2):14-22. (In Russ.) https://doi.org/10.37489/2588-0527-2025-2-14-22. EDN: JADVES


































