Preview

Pharmacogenetics and Pharmacogenomics

Advanced search

The microRNA-144/451 cluster in plasma-derived microvesicles and erythrocytes in patients with history of pulmonary embolism

https://doi.org/10.37489/2588-0527-2023-1-20-32

Abstract

Chronic thromboembolic disease (CTED) and chronic thromboembolic pulmonary hypertension (CTEPH) are the complications that comprise a serious problem for patients with history of pulmonary embolism (PE). Erythrocytes, extracellular microvesicles (EMVs) and miRNAs play a substantial role in the procoagulant states. The aim. To analyze the levels of miR-144-3р, miR-451a, and miR-451b in blood plasma-derived EMVs and erythrocytes in patients with history of PE and in the control group. Materials and Methods. 18 patients with history of PE (13 CTEPH, 5 CTED) and 8 controls were enrolled into the study. All the participants had undergone clinical and biochemical blood tests as well as the coagulogram. We used flow cytometry to assess plasma-derived EMVs (CD9, CD41, CD45, CD235a, CD105). We measured the expression of miR-144-3р, miR-451a, miR-451b by real-time PCR with endogenous control (miR-152-3p) and five exogenous quality controls. Results. The levels of miR-144-3р and miR-451a in patients were lower than in controls, both in EMVs (р = 0.030; р = 0.065) and in erythrocytes (р = 0.023;р = 0.086). In female patients, the levels of miR-144-3р and miR-451a in CTEPH were lower than in CTED (р = 0.087; р = 0.031). Mir-451b in EMVs has not been detected, while in erythrocytes its levels have not differed between the groups. In patients, the levels of miR-144-3р and miR-451a directly correlated with each other both in EMVs (р = 0.004) and in erythrocytes (р = 0.042). In all the participants, the levels of miR-144-3р and miR-451a in EMVs directly correlated with those in erythrocytes (р = 0.002; р = 0.078). The number of erythrocyte-derived EMVs correlated with miR-451a levels both in EMVs (R = 0.472; p = 0.065) and in erythrocytes (R = –0.829; p = 0.011). The level of miR-451a in EMVs correlated with blood plasma levels of factor VIII and fibrinogen (R = 0.584; p = 0.022 and R= –0.489; p = 0.047), and with the International Normalized Ratio (R = 0.894; p = 0.041). Conclusion. The microRNA-144/451 cluster may influence both the hemostasis system and the risk of post-thromboembolic complications development. In the present study, miR-144-3р and miR-451a showed themselves as protective factors in relation to both the development of PE and severity of post-thromboembolic complications.

About the Authors

O. V. Sirotkina
Almazov National Medical Research Centre; “Academician I.P. Pavlov First St. Petersburg State Medical University”; Petersburg Nuclear Physics Institute named by В.Р. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Dr. Sci. (Med.), Professor of Department of Laboratory Medicine and Genetics,Senior Researcher of the Department of Molecular, Genetic, and Nanobiological Technologies, Leading Researcher of the Laboratory of Human Molecular Genetics


Competing Interests:

The authors state that there is no conflict of interest



A. S. Ulitina
Almazov National Medical Research Centre; “Academician I.P. Pavlov First St. Petersburg State Medical University”
Russian Federation

PhD, Cand. Sci. (Med), Head of the Educational and Scientific Laboratory of Department of Laboratory Medicine and Genetics, Senior Researcher of the Department of Molecular, Genetic, and Nanobiological Technologies


Competing Interests:

The authors state that there is no conflict of interest



Y. I. Zhilenkova
Almazov National Medical Research Centre
Russian Federation

PhD, Cand. Sci. (Med), Assistant Professor of Department of Laboratory Medicine and Genetics


Competing Interests:

The authors state that there is no conflict of interest



E. A. Zolotova
Almazov National Medical Research Centre
Russian Federation

Postgraduate Student of Department of Laboratory Medicine and Genetics


Competing Interests:

The authors state that there is no conflict of interest



M. A. Simakova
Almazov National Medical Research Centre
Russian Federation

PhD, Cand. Sci. (Med), Senior Researcher of Laboratory of
Cardiomyopathies


Competing Interests:

The authors state that there is no conflict of interest



O. M. Moiseeva
Almazov National Medical Research Centre
Russian Federation

Dr. Sci. (Med.), Head of Department of Non-coronarogenic
Heart Disease


Competing Interests:

The authors state that there is no conflict of interest



T. V. Vavilova
Almazov National Medical Research Centre
Russian Federation

Dr. Sci. (Med.), Professor, Head of Department of Laboratory Medicine and Genetics


Competing Interests:

The authors state that there is no conflict of interest



References

1. Pastori D, Cormaci VM, Marucci S, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci. 2023 Feb 5;24(4):3169. DOI: 10.3390/ijms24043169.

2. Валиева З.С., Мартынюк Т.В. Хроническая тромбоэмболическая легочная гипертензия: от патогенеза к выбору тактики лечения. Терапевтический архив. 2022;94(7):791–796. [Valieva ZS, Martynyuk TV. Chronic thromboembolic pulmonary hypertension: from pathogenesis to the choice of treatment tactics. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):791–796. (In Russ.)]. DOI: 10.26442/00403660.2022.07.201741.

3. Антонова О.А., Якушкин В.В., Мазуров А.В. Коагуляционная активность мембранных микрочастиц. Биологические мембраны. 2019;36(3):155–175. [Antonova OA, Yakushkin VV, Mazurov AV. Coagulation activity of membrane microparticles. Biologicheskiye membrany = Biological membranes. 2019;36(3):155–175. (In Russ.)]. DOI: 10.1134/S0233475519030034.

4. Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43–50. [Zolotova EA, Simakova MA, Zhilenkova YuI et al. The role of miRNAs in the pathogenesis of venous thromboembolic complications. Russian Journal for Personalized Medicine. 2022;2(1):43–50. (In Russ.)]. DOI: 10.18705/2782-3806-2022-2-1-43-50.

5. Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci. 2021;22(15):8163. DOI: 10.3390/ijms22158163.

6. He Y, Wucorresponding Q. The effect of extracellular vesicles on thrombosis. J Cardiovasc Transl Res. 2022 Nov 28:1–16. DOI: 10.1007/s12265-022-10342-w.

7. Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2021;22(1):153. DOI: 10.3390/ijms22010153.

8. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. DOI: 10.1038/35057062.

9. Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. DOI: 10.1007/s11427-020-1676-5.

10. Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. DOI: 10.1093/nar/gkz097.

11. Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. DOI: 10.3390/ijms21010132.

12. Saliminejad K, Khorram Khorshid HR, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. DOI: 10.1002/jcp.27486.

13. Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5): 841–50. DOI: 10.1016/j.yjmcc.2010.08.007.

14. Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010 Jul 5; 207(7):1351–8. DOI: 10.1084/jem.20100458.

15. Wang X, Hong Y, Wu L et al. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front Neurol. 2021;11:551411. DOI: 10.3389/fneur.2020.551411.

16. He Q, Wang F, Honda T, et al. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep. 2020;10(1):6127. DOI: 10.1038/s41598-020-63335-7.

17. Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–390. DOI: 10.1093/cvr/cvs096.

18. Tao L, Yang L, Huang X, et al. Reconstruction and aof the lncRNAmiRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front Genet. 2019;10:1149. DOI: 10.3389/fgene.2019.01149.

19. Turczyńska KM, Bhattachariya A, Säll J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One. 2013;8(5): e65135. DOI: 10.1371/journal.pone.0065135.

20. Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020;(4):35–40. [Sirotkina OV, Ermakov AI, Gaykovaya LB, et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, gemostazireologija = Thrombosis, hemostasis and rheology. 2020;(4):35–40. (In Russ.)]. DOI: 10.25555/THR.2020.4.0943.

21. Kabanova S, Kleinbongard P, Volkmer J, et al. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156–159. DOI: 10.7150/ijms.6.156.

22. Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics. 2018;11(1):48. DOI: 10.1186/s12920-018-0365-7.

23. Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. DOI: 10.1371/journal.pone.0002360.

24. Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. DOI: 10.1186/1756-0500-7-129.

25. Shen J, Wang Q, Gurvich I, et al. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. Hepatoma Res. 2016;2:305–315. DOI: 10.20517/2394-5079.2016.28.

26. Wagner GM, Chiu DT, Yee MC, Lubin BH. Red cell vesiculation – a common membrane physiologic event. J Lab Clin Med. 1986;108(4):315–24.

27. Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. doi: 10.1111/j.1538-7836.2012.04758.x.

28. Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 2014;9(8):e104200. DOI: 10.1371/journal.pone.0104200.

29. Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28(2):287–96. DOI: 10.1002/stem.257.

30. Fang X, Shen F, Lechauve C, et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica. 2018 Mar;103(3):406–416. DOI: 10.3324/haematol.2017.177394.

31. Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010; 24(15):1620–1633. DOI: 10.1101/gad.1942110.

32. Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. DOI: 10.1186/s12989-019-0300-x.

33. Oto J, Plana E, Solmoirago MJ, et al. microRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel). 2020;12(6):1536. DOI: 10.3390/cancers12061536.

34. Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci. 2020;21(7):2602. DOI: 10.3390/ijms21072602.

35. He F, Ni N, Wang H et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2022;50(4):e22. DOI: 10.1093/nar/gkab1153.

36. Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019;67(4):192–199. DOI: 10.2144/btn-2019-0065.

37. Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014;15:29. DOI: 10.1186/1471-2105-15-29.

38. D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. DOI: 10.1007/s00216-019-01621-8.

39. Zárybnický T, Matoušková P, Ambrož M, et al. The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel). 2019;10(10):763. DOI: 10.3390/genes10100763.

40. Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. DOI: 10.2174/2211536607666180827111633.

41. Felekkis K, Papaneophytou C. Challenges in using circulating micro- RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. DOI: 10.3390/ijms21020561.

42. Rogula S, Pomirski B, Czyżak N, et al. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med. 2022;9:980718. DOI: 10.3389/fcvm.2022.980718


Review

For citations:


Sirotkina O.V., Ulitina A.S., Zhilenkova Y.I., Zolotova E.A., Simakova M.A., Moiseeva O.M., Vavilova T.V. The microRNA-144/451 cluster in plasma-derived microvesicles and erythrocytes in patients with history of pulmonary embolism. Pharmacogenetics and Pharmacogenomics. 2023;(1):20-32. (In Russ.) https://doi.org/10.37489/2588-0527-2023-1-20-32

Views: 553


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0527 (Print)
ISSN 2686-8849 (Online)