The role of DNA-profiling in predicting anticonvulsant-induced QT prolongation diseases based on pharmacogenetic aspects
https://doi.org/10.37489/2588-0527-2022-1-37-52
Abstract
Anticonvulsants or antiepileptic drugs (AEDs) are widely used for various neurological and psychiatric diseases and are often prescribed for a long period. In this regard, the issue of their safety profile is acute, including risk assessment for the development of life-threatening conditions and adverse drug reactions (ADRs). From the point of view of personalized medicine, it is important to develop an interdisciplinary approach to the development of a new strategy for a personalized approach to predicting AED-induced prolongation of the QT interval as one of the most unfavorable prognostic cardiac ADRs (including sudden death syndrome — SDS). We searched the databases of full-text publications for the period from 2012 to 2022 for keywords and their combinations. We have discovered and systematized monogenic and multifactorial forms of long QT syndrome (LQTS) and candidate genes that slow down AEDs metabolism in the liver. Identification of risk alleles of single nucleotide variants (SNV) of candidate genes predisposing to the development of AED-induced LQTS and SDS will allow adjusting the choice and dosage of these drugs and preventing the development of the ADR, which will improve the quality of life and help prevent SDS in patients with mental and neurological disorders
About the Authors
N. M. ZhuravlevRussian Federation
psychiatrics, Junior Researcher of the Institute of Personalized Psychiatry and Neurology
St.-Petersburg
N. A. Shnayder
Russian Federation
neurologist, Dr. Sci. (Med.), Professor, Leading Researcher,
Deputy Head of the Institute of Personalized Psychiatry and Neurology
St.-Petersburg
Leading Researcher of the Center for Collective use «Molecular and Cellular Technologies»
Krasnoyarsk
R. F. Nasyrova
Russian Federation
Psychiatrics, Dr. Sci. (Med.), General Researcher, Head of
the Institute of Personalized Psychiatry and Neurology
St.-Petersburg
References
1. Карлов В. А. Эпилепсия у детей и взрослых мужчин и женщин. М.: БИНОМ-Пресс, 2019. 896 с. [Karlov VA. Epilepsiya u detej i vzroslyh muzhchin i zhenshchin. Moscow: BINOM-Press, 2019. (In Russ).].
2. Шнайдер Н. А., Петрова М. М., Петров К. В., Насырова Р. Ф. Фармакологические предикторы нарушения сердечного ритма и проводимости при юношеской миоклонической эпилепсии. Эпилепсия и пароксизмальные состояния. 2021;13(2):168–79. [Shnayder NA, Petrova MM, Petrov KV, Nasyrova RF. Pharmacological predictors of heart rate and conductivity disorders in juvenile myoclonic epilepsy. Epilepsiya i paroksizmalʹnye sostoyania = Epilepsy and Paroxysmal Conditions. 2021;13(2):168–179. (In Russ).]. DOI: 10.17749/2077-8333/epi.par.con.2021.051
3. Бородулина И. В., Рачин А. П. Полинейропатии в практике врача: особенности патогенеза, клиники и современные подходы к лечению болевых и безболевых форм. РМЖ. 2016;25:1705–1710. [Borodulina IV, Rachin AP. Polyneuropathies: pathogenesis, clinical manifestations, and current treatment approaches to painful and painless conditions. RMJ. 2016;25:1705–1710. (In Russ).].
4. Auerbach DS, Biton Y, Polonsky B, McNitt S, Gross RA, Dirksen RT, Moss AJ. Risk of cardiac events in Long QT syndrome patients when taking antiseizure medications. Transl Res. 2018 Jan;191:81–92.e7. DOI: 10.1016/j.trsl.2017.10.002
5. Talaeı A, Farıdhosseını F, Kazemı H, Fayyazı Bordbar MR, Rezaeı Ardanı A. Topiramatın Şizofreni ve İki Uçlu Duygudurum I Bozukluğu Olan Hastalarda İlaca Bağlı Kilo Alımına Etkileri: Doz Ayarlarının Seçkisiz Klinik Çalışması. [Effect of Topiramate on Drug Associated Weight Gain of Patients with Schizophrenia and Bipolar I Disorders: A Dose Ranging Randomized Trial]. Turk Psikiyatri Derg. 2016 Summer;27(2):0. Turkish. PMID: 27370059.
6. Демьянов И. А., Сурикова В. В., Мельник Е. Ю. Современные тенденции использования антиконвульсантов в психиатрической практике. Вестник СПбГУ. Медицина. 2017;12(3):235–242. [Current trends in the use of anticonvulsants in psychiatric practice. Vestnik SPbSU. Medicine. 2017;12(3):235–242. (In Russ).]. DOI: 10.21638/11701/spbu11.2017.303
7. Brunetti P, Giorgetti R, Tagliabracci A, Huestis MA, Busardò FP. Designer Benzodiazepines: A Review of Toxicology and Public Health Risks. Pharmaceuticals (Basel). 2021 Jun 11;14(6):560. DOI: 10.3390/ph14060560
8. Федеральный закон от 12.04.2010 № 61-ФЗ (ред. от 11.06.2021) «Об обращении лекарственных средств». [Federal Law No. 61-FZ “Ob obrashchenii lekarstvennyh sredstv” dated 12.04.2010 (as amended on 11.06.2021). (In Russ).].
9. Приказ Росздравнадзора от 15.02.2017 № 1071 (ред. от 16.07.2020) «Об утверждении Порядка осуществления фармаконадзора». [Order of Roszdravnadzor No. 1071 “Ob utverzhdenii Poryadka osushchestvleniya farmakonadzora” dated 15.02.2017 (as amended on 16.07.2020) (In Russ).].
10. Бочанова Е. Н., Шнайдер Н. А., Дмитренко Д. В. и др. Опыт регистрации нежелательных побочных реакций на противоэпилептические препараты в клинике Красноярского медицинского университета. Врач. 2016;4:6–8. [Bochanova EN, Shnayder NA, Dmitrenko DV, et al. Experience in recording undesirable side effects from antiepileptic drugs in the Krasnoyarsk medical university clinic. VRACH. 2016;4:6–8. (In Russ).].
11. Zhuravlev NM, Shnayder NA, Vaiman EE, Abdyrakhmanova AK, Petrova MM, Bochanova EN, Romanova IV, Gavrilyuk OA, Lareva NV, Nasyrova RF. Interindividual Variability of Anticonvulsant-Induced QT Prolongation Risk. Personalized Psychiatry and Neurology. 2022;2(1):22–45. DOI: 10.52667/2712-9179-2022-2-1-23-45
12. Приказ Минздрава России от 01.02.2019 № 42 (ред. от 24.08.2020) «Об утверждении ведомственной целевой программы “Развитие фундаментальной, трансляционной и персонализированной медицины”». [Order of the Ministry of Health of Russia No. 42 “On approval of the departmental target program “Development of fundamental, translational and personalized medicine” dated 01.02.2019 (as amended on 24.08.2020). (In Russ).].
13. Салмина А. Б., Шнайдер Н. А., Михуткина С. В. Современные представления об ионных каналах и каналопатиях (обзор литературы). Сибирское медицинское обозрение.2005;34(1):75–78. [Salmina AB, Shnayder NA, Mikhutkina SV. Sovremennye predstavleniya ob ionnyh kanalah i kanalopatiyah (obzor literatury). Siberian Medical Review. 2005;34(1):75–78. (In Russ).].
14. Neira V, Enriquez A, Simpson C, Baranchuk A. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019 Dec;30(12):3068–3078. DOI: 10.1111/jce.14227
15. Nakano Y, Shimizu W. Genetics of long-QT syndrome. J Hum Genet. 2016;61(1):51–55. DOI: 10.1038/jhg.2015.74
16. Alders M, Bikker H, Christiaans I. Long QT Syndrome. 2003 Feb 20 [updated 2018 Feb 8]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021. PMID: 20301308.
17. Goldenberg I, Zareba W, Moss AJ. Long QT Syndrome. Curr Probl Cardiol. 2008;33(11):629–694. DOI: 10.1016/j.cpcardiol.2008.07.002
18. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–877. DOI: 10.1161/CIRCEP.111.962019. Erratum in: Circ Arrhythm Electrophysiol. 2012 Dec;5(6):e119–20. PMID: 22895603.
19. Zareba W, Moss AJ, Schwartz PJ, et al. Influence of the genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med. 1998;339(14):960–965. DOI: 10.1056/NEJM199810013391404
20. Nannenberg EA, Sijbrands EJ, Dijksman LM, et al. Mortality of inherited arrhythmia syndromes: insight into their natural history. Circ Cardiovasc Genet. 2012;5(2):183–189. DOI: 10.1161/CIRCGENETICS.111.961102
21. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normalrange corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–59. DOI: 10.1016/j.jacc.2010.07.038
22. Lankaputhra M, Voskoboinik A. Congenital Long QT Syndrome: A Clinician’s Guide. Internal Medicine Journal. 2021;51(12):1999–2011. DOI:10.1111/imj.15437
23. Committee For Proprietary Medicinal Products (CPMP) Points to consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. London: 1997 Dec.
24. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J. 1957;54(1):59–68. DOI: 10.1016/0002-8703(57)90079-0
25. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8(11):1698–1704. DOI: 10.1016/j.hrthm.2011.05.018
26. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–2194. DOI: 10.1161/CIRCULATIONAHA.111.028258
27. Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation. 2000;102(23):2849–2855. DOI: 10.1161/01.cir.102.23.2849
28. Viskin S, Postema PG, Bhuiyan ZA, et al. The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J Am Coll Cardiol. 2010;55(18):1955–1961. DOI: 10.1016/j.jacc.2009.12.015
29. Ackerman MJ, Khositseth A, Tester DJ, et al. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77(5):413–421. DOI: 10.4065/77.5.413
30. Shimizu W, Noda T, Takaki H, et al. Diagnostic value of epinephrine test for genotyping LQT1, LQT2, and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004;1(3):276–283. DOI: 10.1016/j.hrthm.2004.04.021
31. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113(11):1385–1392. DOI: 10.1161/CIRCULATIONAHA.105.600445
32. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–784. DOI: 10.1161/01.cir.88.2.782
33. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181–2184. DOI: 10.1161/CIRCULATIONAHA.111.062182
34. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932–1963. DOI: 10.1016/j.hrthm.2013.05.014
35. Castiglione A, Odening K. QT-Zeit — Was fange ich eigentlich damit an? [QT Interval and Its Prolongation — What Does It Mean?]. Dtsch Med Wochenschr. 2020 Apr;145(8):536–542. German. DOI: 10.1055/a-0969-6312
36. Эпилепсия и спорт: руководство для врачей / под ред. Н. А. Шнайдер, М. М. Петровой, Р. Ф. Насыровой, О. В. Балберовой. СПб.: ДЕАН, 2022. 248 с. ISBN 978-5-6048707-0-9. [Epilepsy and sport: a guide for physicians. Ed by Shnayder NA, Petrova MM, Nasyrova RF, Balberova OV. Saint-Petersburg: DEAN; 2022. (In Russ).].
37. Parks KA, Parks CG, Yost JP, et al. Acute blood pressure changes associated with antipsychotic administration to psychiatric inpatients. Prim Care Companion CNS Disord. 2018;20(4):18m02299. DOI: 10.4088/PCC.18m02299
38. Nagy D, DeMeersman R, Gallagher D, et al. QTc interval (cardiac repolarisation): Lengthening after meals. Obes Res. 1997;5:531–537. DOI: 10.1002/j.1550-8528.1997.tb00573.x
39. Wenzel-Seifert K, Wittmann M, Haen E. QTc prolongation by psychotropic drugs and the risk of Torsade de Pointes. Dtsch Arztebl Int. 2011;108(41):687–693. DOI: 10.3238/arztebl.2011.0687
40. Brown DW, Giles WH, Greenlund KJ et al. Impaired fasting glucose, diabetes mellitus, and cardiovascular disease risk factors are associated with prolonged QTc duration. Results from the Third National Health and Nutrition Examination Survey. J Cardiovasc Risk. 2001;8(4):227–233. DOI: 10.1177/174182670100800407
41. van Noord C, Eijgelsheim M, Stricker BH. Drug- and non-drugassociated QT interval prolongation. Br J Clin Pharmacol. 2010;70(1):16–23. DOI: 10.1111/j.1365-2125.2010.03660.x
42. Carella MJ, Mantz SL, Rovner DR, et al. Obesity, adiposity, and lengthening of the QT interval: improvement after loss. Int J Obes Relat Metab Disord. 1996;20(10):938–942. PMID: 8910099.
43. El-Gamal A, Gallagher D, Nawras A, et al. Effects of obesity on QT, RR, and QTc intervals. Am J Cardiol.1995:75(14):956–959. DOI: 10.1016/s0002-9149(99)80700-0
44. Zareba W, Lin DA. Antipsychotic drugs and QT interval prolongation. Psychiatr Q. 2003;74(3):291–306. DOI: 10.1023/a:102412270633745. Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation. 1998;98:233451.
45. Shah AA, Aftab A, Coverdale J. QTc prolongation with antipsychotics: is routine ECG monitoring recommended? J Psychiatr Pract. 2014;20(3):196– 206. DOI: 10.1097/01.pra.0000450319.21859.6d
46. Joukamaa M, Heliövaara M, Knekt P, et al. Schizophrenia, neuroleptic medication and mortality. Br J Psychiatry. 2006;188(2):122–127. DOI: 10.1192/bjp.188.2.122
47. Escande D. Pharmacogenetics of cardiac K(+) channels. Eur J Pharmacol. 2000;410(2-3):281–287. DOI: 10.1016/s0014-2999(00)00821-9
48. Varkey JN, Frishman WH. Arrhythmogenesis and COVID-19. Cardiol Rev. 2021;29(6):289–291. DOI: 10.1097/CRD.0000000000000407
49. Vincent GM. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med. 1998;49:263–274. DOI: 10.1146/annurev.med.49.1.263
50. Khera AV, Mason-Suares Н, Brockman D, et al. Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. J Am Coll Cardiol. 2019;74(21):2623–2634. DOI: 10.1016/j.jacc.2019.08.1060
51. Chen L, Zhang W, Fang C et al. Polymorphism H558R in the human cardiac sodium channel SCN5A gene is associated with atrial fibrillation. J Int Med Res. 2011;39(5):1908–1916. DOI: 10.1177/147323001103900535
52. Spellmann I, Reinhard MA, Veverka D, et al. QTc prolongation in short-term treatment of schizophrenia patients: effects of different antipsychotics and genetic factors. Eur Arch Psychiatry Clin Neurosci. 2018;268(4):383–390. DOI: 10.1007/s00406-018-0880-8
53. Gouas L, Nicaud V, Berthet M et al. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet. 2005;13(11):1213–1222. DOI: 10.1038/sj.ejhg.5201489
54. Hobday P, Mahoney D, Urban L, et al. Influence of the common H558R-SCN5A sodium channel polymorphism on the electrocardiographic phenotype in a population-based study. Heart Rhythm. 2005;3:S279–S280. DOI: doi.org/10.1016/j.hrthm.2006.02.837
55. Lehtinen AB, Daniel KR, Shah SA, et al. Relationship between genetic variants in myocardial sodium and potassium channel genes and QT interval duration in diabetics: the Diabetes Heart Study. Ann Noninvasive Electrocardiol. 2009;14(1):72–79. DOI: 10.1111/j.1542-474X.2008.00276.x
56. Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41(4):407–414. DOI: 10.1038/ng.362
57. Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol. 2000;36(1):1–12. DOI: 10.1016/s0735-1097(00)00716-6
58. Koskela J, Kähönen М, Fan М, et al. Effect of common KCNE1 and SCN5A ion channel gene variants on T-wave alternans, a marker of cardiac repolarization, during clinical exercise stress test: the Finnish Cardiovascular Study. Transl Res. 2008;152(2):49–58. DOI: 10.1016/j.trsl.2008.06.003
59. Barhanin J, Lesage F, Guillemare E, et al. KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current. Nature. 1996;384:78–80. DOI: 10.1038/384078a0
60. Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002 Jan 18;295(5554):496–499. DOI: 10.1126/science.1066843
61. De Villiers CP, van der Merwe L, Crotti L et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014;7(5):599–606. DOI: 10.1161/CIRCGENETICS.113.000580
62. Клиническая психофармакогенетика / под ред. Р. Ф. Насыровой, Н. Г. Незнанова.СПб.: ДЕАН, 2020. 408 с. [Clinical psychopharmacogenetics. Ed by Nasyrova RF, Neznanov NG. Saint-Petersburg: DEAN; 2020. (In Russ).].
63. Balestrini S, Sisodiya Sanjay M. Pharmacogenomics in epilepsy. Neuroscience Letters. 2021;29(6):289–291. DOI: 10.1016/j.neulet.2017.01.014
64. Остроумова О. Д., Голобородова И. В. Влияние отдельных групп лекарственных препаратов на риск удлинения интервала QTс. Consilium Medicum. 2019;21(10):95–106. [Ostroumova OD, Goloborodova IV. The effect of individual groups of drugs on the risk of prolongation of the QTc interval. Consilium Medicum. 2019;21(10):95–106. (In Russ).]. DOI: 10.26442/20751753.2019.10.190447
65. Neznanov NG. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology. 2021;1(1):1–2.
66. Fanoe S, Kristensen D, Fink-Jensen A, et al. Risk of arrhythmia induced by psychotropic medications: a proposal for clinical management. Eur Heart J. 2014;35(20):1306–1315. DOI: 10.1093/eurheartj/ehu100
Review
For citations:
Zhuravlev N.M., Shnayder N.A., Nasyrova R.F. The role of DNA-profiling in predicting anticonvulsant-induced QT prolongation diseases based on pharmacogenetic aspects. Pharmacogenetics and Pharmacogenomics. 2022;(1):37-52. (In Russ.) https://doi.org/10.37489/2588-0527-2022-1-37-52