Preview

Pharmacogenetics and Pharmacogenomics

Advanced search

First phase of antipsychotic metabolism in the liver: the role of oxidation

https://doi.org/10.37489/2588-0527-2022-1-15-30

Abstract

This article discusses issues related to the role of biotransformation or metabolism of antipsychotics (APs) in the liver. There are three phases of APs metabolism. Cytochrome P450 monooxygenase, an oxidase with mixed functions, plays a key role in the biotransformation of most APs, participating in the first phase of metabolism. The functional activity of cytochrome P450 enzymes depends on the carriage of single nucleotide variants (SNVs) of the genes encoding these enzymes, as well as on drug-drug interactions. The functional activity of cytochrome P450 enzymes may affect the efficacy and safety of the use of APs. It is important for a practicing psychiatrist to know the pathways of APs oxidation to prevent adverse drug reactions (ADRs) and unwanted drug-drug interactions, which will subsequently increase the efficacy and safety of AP therapy

About the Authors

N. A. Shnayder
Federal State Budgetary Institution V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Russian Federation Ministry of Health; Federal State Budgetary Educational Institution of Higher Education “Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

 

Dr. Sci. (Med.), Professor, Leading Researcher, Deputy Head of the Institute of Personalized Psychiatry and Neurology

St.-Petersburg

Leading Researcher of the Center for Collective use «Molecular and Cellular Technologies»

Krasnoyarsk



A. K. Khasanova
Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Postgraduate Education” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Laboratory assistant of the Department of Psychiatry

Moscow



R. F. Nasyrova
Federal State Budgetary Institution V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Russian Federation Ministry of Health
Russian Federation

Dr. Sci. (Med.), General Researcher, Head of the Institute
of Personalized Psychiatry and Neurology

St.-Petersburg



References

1. Finkel R, Clark MA, Cubeddu LX. Pharmacology. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2008. P. 151.

2. Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015 Jun;114(1):169–179. DOI: 10.1093/bmb/ldv017

3. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387(10027):1561–1572. DOI: 10.1016/S0140-6736(15)00241-X

4. Caroff SN, Hurford I, Lybrand J, Campbell EC. Movement disorders induced by antipsychotic drugs: implications of the CATIE schizophrenia trial. Neurol Clin. 2011 Feb;29(1):127–148, viii. DOI: 10.1016/j.ncl.2010.10.002

5. Sadock BJ, Sadock VA, Ruiz P. Kaplan and Sadock’s Comprehensive Textbook of Psychiatry. 9th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2009. Pp. 4113–4119.

6. Meltzer HY. Update on typical and atypical antipsychotic drugs. Annu Rev Med. 2013;64:393–406. DOI: 10.1146/annurev-med-050911-161504

7. Sheehan JJ, Sliwa JK, Amatniek JC, Grinspan A, Canuso CM. Atypical antipsychotic metabolism and excretion. Curr Drug Metab. 2010 Jul;11(6):516– 525. DOI: 10.2174/138920010791636202

8. Rourke JL, Sinal CJ. Biotransformation/Metabolism. Encycl. Toxicol. 2014;1:490–502.

9. Shanu-Wilson J, Evans L, Wrigley S, Steele J, Atherton J, Boer J. Biotransformation: Impact and Application of Metabolism in Drug Discovery ACS Med Chem Lett. 2020 Aug 28;11(11):2087–2107. DOI: 10.1021/acsmedchemlett.0c00202

10. Shen WW. The metabolism of atypical antipsychotic drugs: an update. Ann Clin Psychiatry. 1999;11(3):145–158. DOI: 10.1023/a:1022312111429

11. Correia MA. Drug biotransformation. In Basic & Clinical Pharmacology, 14th ed.; Katzung BG, Ed. New York, NY, USA: McGraw Hill Education, 2017. Volume 1, pp. 56–74.

12. Josephy DP, Guengerich PF, Miners JO. “Phase I and Phase II” drug metabolism: terminology that we should phase out? Drug Metab Rev. 2005;37(4):575–580. DOI: 10.1080/03602530500251220

13. De Bruyn Kops C, Šícho M, Mazzolari A, Kirchmair J. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. Chem Res Toxicol. 2021;34(2):286–299. DOI: 10.1021/acs.chemrestox.0c00224

14. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14(6):611–650. DOI: 10.1021/tx0002583

15. Bachmann K. Drug Metabolism. Pharmacology. 2009;8:131–173.

16. Beedham C. The role of non-P450 enzymes in drug oxidation. Pharm World Sci. 1997;19(6):255–263. DOI: 10.1023/a:1008668913093

17. Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr Drug Targets. 2018;19(1):38–54. DOI: 10.2174/1389450118666170125144557

18. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561– 597. DOI: 10.2174/1389200023337054

19. Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther. 2013 May;138(2):229– 254. DOI: 10.1016/j.pharmthera.2013.01.010

20. Jensen K, Møller BL. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry. 2010;71(2–3):132–141. DOI: 10.1016/j.phytochem.2009.10.017

21. Klein MT, Torry LA, Wu BC, Townsend SH, Paspek SC. Hydrolysis in supercritical water: Solvent effects as a probe of the reaction mechanism. J Supercrit Fluids. 1990;3:222–227. DOI: org/10.1016/0896-8446(90)90026-I

22. Nelson DR. Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta Proteins Proteom. 2018 Jan;1866(1):141–154. DOI: 10.1016/j.bbapap.2017.05.003

23. Клиническая психофармакогенетика / под ред. Насыровой Р. Ф., Незнанова Н. Г. СПб.: Издательство ДЕАН, 2019. С. 97–174. [Klinicheskaya psikhofarmakogenetika. Ed by. Nasyrova RF, Neznanova NG. SPb.: Izdatel’stvo DEAN, 2019. (In Russ).].

24. Uno Y, Iwasaki K, Yamazaki H, Nelson DR. Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug Metab Rev. 2011;43(3):346–361. DOI: 10.3109/03602532.2010.549492

25. Thomas LP, Laszlo K. Rapid Review Pharmacology. 3rd ed. The Netherlands (Amsterdam): Elsevier, 2010. Pp. 7–9.

26. Shnayder NA, Abdyrakhmanova AK, Nasyrova RF. Phase I of antipsychotics metabolism and its pharmacogenetic testing. Personalized Psychiatry and Neurology. 2022;2(1):4–21. DOI: 10.52667/2712-9179-2022-2-1-4-21

27. Nelson DR. The cytochrome p450 homepage. Hum Genomics. 2009;4(1):59–65. DOI: 10.1186/1479-7364-4-1-59

28. Guengerich FP. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 2018;8(12):10964–10976. DOI: 10.1021/acscatal.8b03401

29. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29(1–2):413–580. DOI: 10.3109/03602539709037591

30. Shnayder NA, Abdyrakhmanova AK, Nasyrova RF. Oxidation of antipsychotics. Encyclopedia. 2022;2:974–989. DOI: 10.3390/encyclopedia2020064

31. Le T, Bhushan V, Sochat M, Vaidyanathan V, Schimansky S, Abrams J, Kallianos K. First Aid for the USMLE Step 1. 30th ed. NY: McGraw Hill Education, 2020. Pp. 230, 252.

32. Machalz D, Pach S, Bermudez M, Bureik M, Wolber G. Structural insights into understudied human cytochrome P450 enzymes. Drug Discov Today. 2021;26(10):2456–2464. DOI: 10.1016/j.drudis.2021.06.006

33. Go.drugbank.com [Internet]: открытая база данных. Drug bank [cited 2022 Oct 19]. URL: https://go.drugbank.com/

34. Hukkanen J. Induction of cytochrome P450 enzymes: a view on human in vivo findings. Expert Rev Clin Pharmacol. 2012;5(5):569–585. DOI: 10.1586/ecp.12.39

35. Department of Medicine Clinical Pharmacology [Internet]. Drug Interactions Flockhart Table [cited 2022 Oct 19]. URL: https://druginteractions.medicine.iu.edu/MainTable.aspx.

36. Johansson I, Ingelman-Sundberg M. Genetic polymorphism and toxicology—with emphasis on cytochrome р450. Toxicol Sci. 2011;120(1):1–13. DOI: 10.1093/toxsci/kfq374

37. Medsafe: New Zealand Medicines and Medical Devices Safety Authority [Internet]. Drug Metabolism — The Importance of Cytochrome P450 3A4 [cited 2022 Oct 19]. URL: https://www.medsafe.govt.nz/profs/puarticles/march2014drugmetabolismcytochromep4503a4.htm.

38. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–348. DOI: 10.1038/clpt.2014.129

39. Bondy B, Zill P. Psychopharmacogenetics — a challenge for pharmacotherapy in psychiatry. World J Biol Psychiatry. 2001;2(4):178–183. DOI: 10.3109/15622970109026806

40. Насырова Р. Ф., Иванов М. В., Незнанов Н. Г. Введение в психофармакогенетику: монография. СПб.: Издательский центр СПб. НИПНИ им. В. М. Бехтерева, 2015. 272 с. [Nasyrova RF, Ivanov MV, Neznanov NG. Vvedenie v psikhofarmakogenetiku: monografiya. SPb.: Izdatel’skii tsentr SPb. NIPNI im. V. M. Bekhtereva, 2015. (In Russ).].

41. Абдырахманова А. К., Шнайдер Н. А., Насырова Р. Ф. Клинический случай поздней фармакогенетической диагностики нежелательных реакций на фоне психофармакотерапии у пациентки с рекуррентным депрессивным расстройством. Фармакогенетика и фармакогеномика. 2021;(2):21–23. [Abdyrakhmanova AK, Shnaider NA, Nasyrova RF. Klinicheskii sluchai pozdnei farmakogeneticheskoi diagnostiki nezhelatel’nykh reaktsii na fone psikhofarmakoterapii u patsientki s rekurrentnym depressivnym rasstroistvom. Farmakogenetika i farmakogenomika = Pharmacogenetics and pharmacogenomics. 2021;(2):21–23. (In Russ).]. DOI: 10.37489/2588-0527-2021-2-21-23

42. Abdyrakhmanova AK, Nasyrova RF. Pharmacogenetic testing of cytochrome p450 metabolizing enzymes in 28-year-old man with treatmentresistant schizophrenia. Personalized Psychiatry and Neurology. 2022;2(1):81–88. DOI: 10.52667/2712-9179-2022-2-1-81-88

43. Laika B, Leucht S, Heres S, Steimer W. Intermediate metabolizer: increased side effects in psychoactive drug therapy. The key to costeffectiveness of pretreatment CYP2D6 screening? Pharmacogenomics J. 2009;9(6):395–403. DOI: 10.1038/tpj.2009.23

44. Zhuravlev NM, Shnayder NA, Vaiman EE, Abdyrakhmanova AK, Petrova MM, Bochanova EN, Romanova IV, Gavrilyuk OA, Lareva NV, Nasyrova RF. Interindividual Variability of Anticonvulsant-Induced QT Prolongation Risk. Personalized Psychiatry and Neurology. 2022;2(1):22–45. DOI: 10.52667/2712-9179-2022-2-1-23-45

45. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–396.

46. Кукес В. Г., Иванец Н. Н., Сычёв Д. А., Псарева Н. А. Фармакогенетика системы цитохрома Р-450 и безопасность терапии антидепрессантами. Биомедицина. 2014;1(1):67–80. [Kukes VG, Ivanets NN, Sychev DA, Psareva NA. Cytochrome P-450 pharmacogenetics and antidepressants treatment safety. Journal Biomed. 2014;1(1):67–80. (In Russ).]. URL: https://journal.scbmt.ru/jour/article/view/305/210. Ссылка активна на 01.12.2022.

47. Dobrodeeva VS, Abdyrahmanova AK, Nasyrova RF. Personalized approach to antipsychotic-induced weight gain prognosis. Personalized Psychiatry and Neurology. 2021;1(1):3–10. DOI: 10.52667/2712-9179-2021-1-1-3-10

48. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci. 2013;368(1612): 20120431. DOI: 10.1098/rstb.2012.0431

49. GeneCards [Internet]: открытая база данных. The Human Gene Database [cited 2022 Oct 19]. URL: https://www.genecards.org/.

50. Proteinatlas.org [Internet]. The Humаn Protein Atlas [cited 2022 Oct 19]. URL: https://www.proteinatlas.org/.

51. Kawajiri K. CYP1A1. IARC Sci Publ. 1999;(148):159–172.

52. Guo J, Zhu X, Badawy S, et al. Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Curr Drug Metab. 2021;22(1):40–49. DOI: 10.2174/1389200221999210101233135

53. Hong CC, Tang BK, Rao V, et al. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast Cancer Res. 2004;6(4):R338–51. DOI: 10.1186/bcr797

54. Raunio H, Rahnasto-Rilla M. CYP2A6: genetics, structure, regulation, and function. Drug Metabol Drug Interact. 2012;27(2):73–88. DOI: 10.1515/dmdi-2012-0001

55. Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of сytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241. DOI: 10.1124/pr.115.011411

56. Waring RH. Cytochrome P450: genotype to phenotype. Xenobiotica. 2020;50(1):9–18. DOI: 10.1080/00498254.2019.1648911

57. Amorosi CJ, Chiasson MA, McDonald MG, et al. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am J Hum Genet. 2021;108(9):1735–1751. DOI: 10.1016/j.ajhg.2021.07.001

58. Zhu-Ge J, Yu YN. Enzyme activity analysis of CYP2C18 with exon 5 skipped. Acta Pharmacol Sin. 2004;25(8):1065–1059.

59. Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology. 2000;61(3):174–183. DOI: 10.1159/000028398

60. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13. DOI: 10.1038/sj.tpj.6500285

61. Guengerich FP. Cytochrome P450 2E1 and its roles in disease. Chem Biol Interact. 2020;322:109056. DOI: 10.1016/j.cbi.2020.109056

62. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–348. DOI: 10.1038/clpt.2014.129

63. Smith SA, Colley HE, Sharma P, et al. Expression and enzyme activity of cytochrome P450 enzymes CYP3A4 and CYP3A5 in human skin and tissue-engineered skin equivalents. Exp Dermatol. 2018;27(5):473–475. DOI: 10.1111/exd.13483

64. Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys. 2019;673:108078. DOI: 10.1016/ j.abb.2019.108078

65. Brandl EJ, Chowdhury NI, Tiwari AK, et al. Genetic variation in CYP3A43 is associated with response to antipsychotic medication. J Neural Transm (Vienna). 2015;122(1):29–34. DOI: 10.1007/s00702-014-1298-8

66. Javaid JI. Clinical pharmacokinetics of antipsychotics. J Clin Pharmacol. 1994;34(4):286–295. DOI: 10.1002/j.1552-4604.1994.tb01995.x

67. Иващенко Д. В., Насырова Р. Ф., Иванов М. В., Незнанов Н. Г. История фармакогенетики в психиатрии. Фармакогенетика и фармакогеномика. 2015;(2):33–40. [Ivashchenko DV, Nasyrova RF, Ivanov MV, Neznanov NG. The history of pharmacogenetics in psychiatry. Pharmacogenetics and Pharmacogenomics. 2015;(2):33–40. (In Russ).]. URL: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/178?locale=ru_RU. Ссылка активна на 01.12.2022.

68. Иващенко Д. В., Сосин Д. Н., Кирничная К. А., Ершов Е. Е., Тараскина А. Е., Иванов М. В., Сычёв Д. А., Насырова Р. Ф., Незнанов Н. Г. Экономическая целесообразность фармакогенетического тестирования при назначении антипсихотиков. Фармакогенетика и фармакогеномика. 2015;(1):30–39. [Ivashchenko DV, Sosin DN, Kirnichnaya KA, Ershov EE, Taraskina AE, Ivanov MV, Sychev DA, Nasyrova RF, Neznanov NG. The economic feasibility of pharmacogenetic-based prescribing of antipsychotics: a review. Pharmacogenetics and Pharmacogenomics. 2015;(1):30–39. (In Russ).].

69. Насырова Р. Ф., Добродеева В. С., Скопин С. Д., Шнайдер Н. А., Незнанов Н. Г. Проблемы и перспективы внедрения фармакогенетического тестирования в реальной клинической практике в Российской Федерации. Вестник психиатрии, неврологии и нейрохирургии. 2020;(3):2–7. [Nasyrova RF, Dobrodeeva VS, Skopin SD, Shnaider NA, Neznanov NG. Problems and prospects for the implementation of pharmacogenetic testing in real clinical practice in the Russian Federation. Bulletin of Neurology, Psychiatry and Neurosurgery. 2020;(3):2–7. (In Russ).]. DOI: 10.33920/med-01-2003-01

70. Сычёв Д. А., Кукес В. Г., Ташенова А. И. Фармакогенетическое тестирование — новая медицинская технология. Медицинские технологии. Оценка и выбор. 2010;(2):39–43. [Sychev DA, Kukes VG, Tashenova AI. Pharmacogenetic Testing: a New Medical Technology. Meditsinskie tekhnologii. Otsenka i vybor. 2010;(2):39–43. (In Russ).].

71. Bond T. Third clinical trial reinforces the use of the GeneSight® pharmacogenomic test. Pharmacogenomics. 2014;15(3):257. DOI: 10.2217/pgs.14.7

72. Genesight.com [Internet]. GeneSight test [cited 2022 Oct 19]. Available from: https://genesight.com/.

73. Howland RH. Pharmacogenetic testing in psychiatry: not (quite) ready for primetime. J Psychosoc Nurs Ment Health Serv. 2014;52(11):13–16. DOI: 10.3928/02793695-20141021-09

74. Dynacare [Internet]. Genecept Assay [cited 2022 Oct 19]. Available from: https://www.dynacare.ca/patients-and-individuals/health-solutions/mental-health-solutions.aspx.

75. Lara DV, Melo DO, Silva RAM, Santos PCJL. Pharmacogenetic testing in psychiatry and neurology: an overview of reviews. Pharmacogenomics. 2021;22(8):505–513. DOI: 10.2217/pgs-2020-0187

76. Kumar A, Kearney A. The use of pharmacogenetic testing in psychiatry. J Am Assoc Nurse Pract. 2021;33(11):849–851. Published 2021 Nov 10. DOI: 10.1097/JXX.0000000000000666

77. Gardner KR, Brennan FX, Scott R, Lombard J. The potential utility of pharmacogenetic testing in psychiatry. Psychiatry J. 2014;2014:730956. doi: 10.1155/2014/730956

78. Genecards.org [Internet]. CYP1A1 Gene — Cytochrome P450 Family 1 Subfamily A Member 1 [cited 2022 Oct 19]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CYP1A1.

79. Genecards.org [Internet]. CYP1B1 Gene — Cytochrome P450 Family 1 Subfamily B Member 1 [cited 2022 Oct 19]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CYP1B1.

80. Proteinatlas.org [Internet]. The Human Protein Atlas: CYP1A1 [cited 2022 Oct 19]. Available from: https://www.proteinatlas.org/ENSG00000140465-CYP1A1/tissue.


Review

For citations:


Shnayder N.A., Khasanova A.K., Nasyrova R.F. First phase of antipsychotic metabolism in the liver: the role of oxidation. Pharmacogenetics and Pharmacogenomics. 2022;(1):15-30. (In Russ.) https://doi.org/10.37489/2588-0527-2022-1-15-30

Views: 2083


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0527 (Print)
ISSN 2686-8849 (Online)