Preview

Pharmacogenetics and Pharmacogenomics

Advanced search

Clinical pharmacogenetics of angiotensin II receptor blockers

https://doi.org/10.37489/2588-0527-2020-1-19-25

Abstract

This scientific review presents a current data on the effect of genetic polymorphism of CYP2C9 genes and genes encoding components of the renin-angiotensin-aldosterone system (RAAS) on the angiotensin II receptor blockers (ARBs) pharmacokinetics and pharmacodynamics. The data shows that genetic polymorphisms of these genes determine the large interindividual variability of the pharmacological response to ARBs. In this article, we carried out a comprehensive review of recent findings on interpatient variability in antihypertensive therapy response due to genetic factors and individualized treatment approach in ARBs therapy.

About the Authors

I. I. Sinitsina
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

Sinitsina Irina I. - Doctor of Medical Sciences, associate Professor, Professor of the Department of Clinical Pharmacology and Therapy

Moscow



Competing Interests: нет конфликта интересов в этой работе


A. V. Boyarko
LLC LMS Clinic
Russian Federation

Boyarko Alexey V. - Doctor LLC LMS Clinic

Moscow



Competing Interests: нет конфликта интересов в этой работе


I. I. Temirbulatov
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation
Temirbulatov Ilyas I. - Resident of the Department of Clinical Pharmacology and Therapy

Moscow

Competing Interests: нет конфликта интересов в этой работе


References

1. Ponikowski P, Voors AA, Anker SD, et al 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016;37:2129-2200m. 10.1093/eurheartj/ehw128

2. Williams B, Mancia G, Spiering W, et al 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. https://doi.org/10.1093/eurheartj/ehy339

3. Rodgers JE, Patterson JH (2001) Angiotensin II-receptor blockers: Clinical relevance and therapeutic role. Am. J. Heal. Pharm. 2001;58:671–683

4. Сычев Д.А., Раменская Г.В., Игнатьев И.В., Кукес В.Г. Клиническая фармакогенетика: Учебное пособие / Под ред. В.Г. Кукеса, Н.П. Бочкова.- М.:ГЭОТАР Медиа. 2007. [Sychev D.A., Ramenskaya G.V., Ignat'ev I.V., Kukes V.G. Klinicheskaya farmakogenetika: Uchebnoe posobie / Ed by V.G. Kukes, N.P. Bochkova.- M.:GEOTAR Media. 2007 (In Russ).]

5. Isvoran A, Louet M, Vladoiu DL, et al. Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today. 2017;22:366–376. https://doi.org/10.1016/j.drudis.2016.09.015

6. Spiering W, Kroon AA, Fuss-Lejeune MJMJ, De Leeuw PW. Genetic contribution to the acute effects of angiotensin II type 1 receptor blockade. J Hypertens. 2005;23:753–758. https://doi.org/10.1097/01.hjh.0000163143.66965.06

7. Wang B, Wang J, Huang S-Q, et al. Genetic Polymorphism of the Human Cytochrome P450 2C9 Gene and Its Clinical Significance. Curr Drug Metab. 2009;10:781–834. https://doi.org/10.2174/138920009789895480

8. Zhou Y, Ingelman-Sundberg M, Lauschke VM (2017) Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin Pharmacol Ther. 2017;102:688–700. https://doi.org/10.1002/cpt.690

9. Мирзаев К.Б., Федоринов Д.С., Иващенко Д.В., Сычев Д.А. Мультиэтнический анализ кардиологических фармакогене- тических маркеров генов цитохрома Р450 и мембранных транспортеров в российской популяции. Рациональная Фармакотерапия в Кардиологии 2019;15(3):393-406. [Mirzaev K.B., Fedorinov D.S., Ivashchenko D.V., Sychev D.A. Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome p450 and Membrane Transporters Genes in the Russian Population. Rational Pharmacotherapy in Cardiology 2019;15(3):393-406. (In Russ).] DOI:10.20996/1819-6446-2019-15-3-393-406

10. Карева Е.Н. Эволюция сартанов или все ли сартаны одинаковы? Клин. фармакол. тер., 2016, 25 (3), 11-21. [Kareva E.N. Evolution of angiotensin receptor blockers. Clin. Pharmacol. Ther. 2016;25(3):11-21. (In Russ).]

11. Redon J, Fabia JM. Efficacy in angiotensin receptor blockade: A comparative review of data with olmesartan. JRAAS - J. Renin-Angiotensin-Aldosterone Syst. 2009;10:147–156

12. Cabaleiro T, Román M, Ochoa D, et al. Evaluation of the relationship between sex, polymorphisms in CYP2C8 and CYP2C9, and pharmacokinetics of angiotensin receptor blockers. Drug Metab Dispos. 2013;41:224–229. https://doi.org/10.1124/dmd.112.046292

13. Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44:797–814. https://doi.org/10.2165/00003088-200544080-00003

14. Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther. 2002;71:89–98. https://doi.org/10.1067/mcp.2002.121216

15. Babaoglu MO, Yasar U, Sandberg M, et al. CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur J Clin Pharmacol. 2004;60:337–342. https://doi.org/10.1007/s00228-004-0785-5

16. Allabi AC, Gala JL, Horsmans Y, et al. Functional impact of CYP2C9*5, CYP2C9*6, CYP2C9*8, and CYP2C9*11 in vivo among black Africans. Clin Pharmacol Ther. 2004;76:113–118. https://doi.org/10.1016/j.clpt.2004.04.001

17. Lee CR, Pieper JA, Hinderliter AL, et al. Losartan and E3174 pharmacokinetics in cytochrome P450 2C9*1/*1, *1/*2, and *1/*3 individuals. Pharmacotherapy. 2003;23:720–725. https://doi.org/10.1592/phco.23.6.720.32187

18. Леонова М.В. Сартаны в лечении артериальной гипертонии: преимущества кандесартана. Consilium Medicum. 2019;21(1):25–30. [Leonova M.V. Sartany v lechenii arterial'noi gipertonii: preimushchestva kandesartana. Consilium Medicum. 2019;21(1):25–30. (in Russ.)] DOI:10.26442/20751753.2019.1.190280

19. Hallberg P, Karlsson J, Kurland L, et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens. 2002;20:2089–2093. https://doi.org/10.1097/00004872-200210000-00030

20. Hong X, Zhang S, Mao G, et al. CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol. 2005;61:627–634. https://doi.org/10.1007/s00228-005-0976-8

21. Hanatani T. CYP2C9*3 influences the metabolism and the drug-interaction of candesartan in vitro. Pharmacogenomics J. 2001;1:288–292. https://doi.org/10.1038/sj.tpj.6500063

22. Procopciuc L, Popescu T, Jebeleanu G, et al. Essential arterial hypertension and polymorphism of angiotensinogen M235T gene. J Cell Mol Med. 2002;6:245–250. https://doi.org/10.1111/j.1582-4934.2002.tb00191.x

23. Zhou A, Carrell RW, Murphy MP, et al. A redox switch in angiotensinogen modulates angiotensin release. Nature. 2010;468:108–111. https://doi.org/10.1038/nature09505

24. Муженя Д.В. Патофизиологическая роль и прогностическая значимость М235Т полиморфизма гена ангиотензиногена (AGТ) при болезнях сердечного континуума (БСК) // Вестн. Адыгейского гос. ун-та. Сер. 4: Естеств.-матем. и техн. науки. 2011. № 3. С. 69–81. [Pathophysiological role and the prognostic importance of the angiotensinogen (AGT) gene M235T polymorphism at illnesses of a heart continuum. Vestnik Adygeiskogo gosudarstvennogo universiteta, seriya «Estestvenno-matematicheskie i tekhnicheskie nauki 2011;(3):69–81. (in Russ.)]

25. Страмбовская Н.Н. Прогностическая роль полиморфных вариантов генов-кандидатов у больны ишемическим инсультом в Забайкалье // Фундам. исследования. 2015. № 1. С. 140–144. [Strambovskaya N.N Рrognostic role genetic polymorphisms for ischemic stroke patients in transbaikal region. 2015;(1):140-144.(in Russ.)]

26. Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: The importance of haplotypes. J Hypertens. 2010;28:65–75. https://doi.org/10.1097/HJH.0b013e328332031a

27. Зотова Т.Ю., Кубанова А.П., Азова М.М., Аит Аисса Амира. Особенности клинического течения артериальной гипертензии в зависимости от полиморфного варианта гена AGTR1. Клин. мед. 2017; 95(5):404-407. [Zotova T.Yu., Kubanova A.P., Azova M.M., Aut Aissa Amira Peculiarities of the clinical picture of arterial hypertension depending on polymorphic variant of AGTR1 gene. Klin. med. 2017;95(5):404-407. DOI http://dx.doi.org/10.18821/0023-2149-2017-95-5-404-407(in Russ.)]

28. Redon J, Luque-Otero M, Martell N, et al. Renin-angiotensin system gene polymorphisms: Relationship with blood pressure and microalbuminuria in telmisartan-treated hypertensive patients. Pharmacogenomics J. 2005;5:14–20. https://doi.org/10.1038/sj.tpj.6500280

29. Van De Wal RMA, Van Veldhuisen DJ, Van Gilst WH, Voors AA. Addition of an angiotensin receptor blocker to full-dose ACE-inhibition: Controversial or common sense? Eur. Heart J. 2005;26:2361–2367

30. Zhang H, Sun M, Sun T, et al. Association between angiotensin II type 1 receptor gene polymorphisms and ischemic stroke: A meta-analysis. Cerebrovasc Dis. 2011;32:431–438. https://doi.org/10.1159/000330655

31. Szolnoki Z, Havasi V, Talián G, et al. Angiotensin II type-1 receptor A1166C polymorphism is associated with increased risk of ischemic stroke in hypertensive smokers. J Mol Neurosci. 2006;28:285–290. https://doi.org/10.1385/JMN:28:3:285

32. Rubattu S, Di Angelantonio E, Stanzione R, et al. Gene polymorphisms of the renin-angiotensin-aldosterone system and the risk of ischemic stroke: A role of the A1166C/AT1 gene variant. J Hypertens. 2004;22:2129–2134. https://doi.org/10.1097/00004872-200411000-00015

33. Weekers L, Bonhanick B, Hadjadj S, et al. Modulation of the renal response to ACE inhibition by ACE insertion/deletion polymorphism during hyperglycemia in normotensive, normoalbuminuric type 1 diabetic patients. Diabetes. 2005;54:2961–2967. https://doi.org/10.2337/diabetes.54.10.2961

34. Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: The Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation. 2005;111:3374–3383. https://doi.org/10.1161/CIRCULATIONAHA.104.504639

35. Kurland L, Melhus H, Karlsson J, et al. Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J Hypertens. 2002;20:657–663. https://doi.org/10.1097/00004872-200204000-00023

36. Conrady AO, Kiselev IO, Usachev NI, et al. (2005) Effect of 24-week treatment with telmisartan on myocardial structure and function: Relationship to insertion/deletion polymorphism of the angiotensin-converting enzyme gene. J Int Med Res. 2005;33 Suppl 1:30A-38A.

37. https://doi.org/10.1177/14732300050330s105

38. Jia M, Yang B, Li Z, et al. Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 gene. PLoS One. 2014; 7;9(8):e104311

39. https://doi.org/10.1371/journal.pone.0104311

40. Heller S, Linhart A, Jindra A, et al. Association of -344/T/C aldosterone synthase polymorphism (CYP11B2) with left ventricular structure and humoral parameters in young normotensive men. Blood Press. 2004;13:158–163. https://doi.org/10.1080/08037050410035554

41. Ortlepp JR, Hanrath P, Mevissen V, et al. Variants of the CYP11B2 gene predict response to therapy with candesartan. Eur J Pharmacol. 2002;445:151–152. https://doi.org/10.1016/S0014-2999(02)01766-1

42. Wang L, Zhang Z, Liu D, et al (2020) Association of −344C/T polymorphism in the aldosterone synthase (CYP11B2) gene with cardiac and cerebrovascular events in Chinese patients with hypertension. J Int Med Res. 2020;48(9):300060520949409. https://doi.org/10.1177/0300060520949409

43. Pi Y, Zhang L li, Chang K, et al. Lack of an Association between CYP11B2 C-344T Gene Polymorphism and Ischemic Stroke: A Meta-Analysis of 7,710 Subjects. PLoS One. 2013;8(8):e68842.

44. https://doi.org/10.1371/journal.pone.0068842

45. Androulakis E, Tousoulis D, Miliou A, et al. THE IMPACT OF AN ALDOSTERONE SYNTHASE (CYP11B2) POLYMORPHISM ON VASCULAR FUNCTION AND INFLAMMATORY BIOMARKERS IN ESSENTIAL HYPERTENSION. J Am Coll Cardiol. 2012;59:E1634. https://doi.org/10.1016/s0735-1097(12)61635-0

46. Chandra S, Saluja D, Narang R, et al. Atrial natriuretic peptide and aldosterone synthase gene in essential hypertension: A case-control study. Gene. 2015;567:92–97. https://doi.org/10.1016/j.gene.2015.04.062

47. Byrd JB, Auchus RJ, White PC (2015) Aldosterone Synthase Promoter Polymorphism and Cardiovascular Phenotypes in a Large, Multiethnic Population-Based Study. J Investig Med. 2015;63:862–866. https://doi.org/10.1097/JIM.0000000000000220


Review

For citations:


Sinitsina I.I., Boyarko A.V., Temirbulatov I.I. Clinical pharmacogenetics of angiotensin II receptor blockers. Pharmacogenetics and Pharmacogenomics. 2020;(1):19-25. (In Russ.) https://doi.org/10.37489/2588-0527-2020-1-19-25

Views: 2398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0527 (Print)
ISSN 2686-8849 (Online)