Preview

Pharmacogenetics and Pharmacogenomics

Advanced search

Pharmacogenetics of antiviral agents for the treatment of COVID-19

https://doi.org/10.37489/2588-0527-2021-1-38-41

Abstract

Presented a literature review on the possible influence of pharmacogenetic markers on the efficacy and safety of COVID-19 therapy. Clinical studies of remdesivir and favipiravir are reviewed. Potential pharmacogenetic markers are described based on the available data on the pharmacokinetics of the drugs. We separately described the effect of the infectious-inflammatory process on the expression of cytochrome family enzymes.

About the Authors

I. I. Temirbulatov
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

Temirbulatov Ilyas I., postgraduate student of the Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal; Clinical Pharmacologist Municipal Clinical Hospital No.15 named O.M. Filatov Department of Health of Moscow



A. V. Kryukov
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

Kryukov Alexander V., Cand. Sci. (Med.), Associate Professor of the Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal; Head of the Department of Clinical Pharmacology, Clinical Pharmacologist Municipal Clinical Hospital No.15 named O.M. Filatov Department of Health of Moscow

Moscow



D. A. Sychev
Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Russian Federation

Sychev Dmitry A., Dr. Sci. (Med.), Professor, Corresponding Member RAS, Rector, Head Department of the Clinical Pharmacology and Therapy named after Academician B.E. Votchal

SPIN code: 4525-7556

Moscow



References

1. Agostini ML, Andres EL, Sims AC, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9(2):e00221-18. DOI:10.1128/mBio.00221-18.

2. Siegel D, Hui HC, Doerffler E, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J Med Chem. 2017;60(5):1648–1661. DOI:10.1021/acs.jmedchem.6b01594.

3. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. DOI:10.1038/s41422-020-0282-0.

4. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813–1826. DOI:10.1056/NEJMoa2007764.

5. Consortium WHOST, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384(6):497–511. DOI:10.1056/NEJMoa2023184.

6. Ader F, Bouscambert-Duchamp M, Hites M, et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. September 2021:S1473-3099(21)00485-0. DOI:10.1016/S1473-3099(21)00485-0.

7. Mozaffari E, Chandak A, Zhang Z, et al. Remdesivir treatment in hospitalized patients with COVID-19: a comparative analysis of in-hospital all-cause mortality in a large multi-center observational cohort. Clin Infect Dis. 2021 Oct 1;ciab875. DOI:10.1093/cid/ciab875.

8. Deb S, Reeves AA, Hopefl R, Bejusca R. ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential. Pharmaceuticals (Basel). 2021;14(7):655. DOI:10.3390/ph14070655.

9. Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci. 2020;6(5):672–683. DOI:10.1021/acscentsci.0c00489.

10. Deb S, Reeves AA. Simulation of remdesivir disposition and its drug interactions. J Pharm Pharm Sci. 2021;24:277–291. DOI:10.18433/jpps32011.

11. Zhu H-J, Wang X, Gawronski BE, Brinda BJ, Angiolillo DJ, Markowitz JS. Carboxylesterase 1 as a Determinant of Clopidogrel Metabolism and Activation. J Pharmacol Exp Ther. 2013;344(3):665–672. DOI:10.1124/jpet.112.201640.

12. Shi J, Wang X, Nguyen JH, et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol. 2016;119:76–84. DOI:10.1016/j.bcp.2016.09.003.

13. Uesugi M, Hosokawa M, Shinke H, et al. Influence of Cytochrome P450 (CYP) 3A4*1G Polymorphism on the Pharmacokinetics of Tacrolimus, Probability of Acute Cellular Rejection, and mRNA Expression Level of CYP3A5 Rather than CYP3A4 in Living-Donor Liver Transplant Patients. Biol Pharm Bull. 2013;36(11):1814–1821. DOI:10.1248/bpb.b13-00509.

14. Hicks JK, Sangkuhl K, Swen JJ, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37–44. DOI:10.1002/cpt.597.

15. Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015;98(2):127–134. DOI:10.1002/cpt.147.

16. Ramsey LB, Johnson SG, Caudle KE, et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin Pharmacol Ther. 2014;96(4):423–428. DOI:10.1038/clpt.2014.125.

17. Manabe T, Kambayashi D, Akatsu H, Kudo K. Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. BMC Infect Dis. 2021;21(1):489. DOI:10.1186/s12879-021-06164-x.

18. Lou Y, Liu L, Yao H, et al. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial. Eur J Pharm Sci. 2021;157:105631. DOI:10.1016/j.ejps.2020.105631.

19. Mishima E, Anzai N, Miyazaki M, Abe T. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J Exp Med. 2020;251(2):87–90. DOI:10.1620/tjem.251.87.

20. Takahashi H, Iwasaki Y, Watanabe T, et al. Case studies of SARSCoV- 2 treated with favipiravir among patients in critical or severe condition. Int J Infect Dis. 2020;100:283–285. DOI:10.1016/J.IJID.2020.08.047.

21. Murai Y, Kawasuji H, Takegoshi Y, et al. A case of COVID-19 diagnosed with favipiravir-induced drug fever based on a positive drug-induced lymphocyte stimulation test. Int J Infect Dis. 2021;106:33–35. DOI:10.1016/J.IJID.2021.03.048.

22. Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther. 2020;209:107512. DOI:10.1016/j.pharmthera.2020.107512.

23. Madelain V, Nguyen THT, Olivo A, et al. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet. 2016;55(8):907–923. DOI:10.1007/s40262-015-0364-1.

24. Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, Patil S, Barkate H. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021 Jan;102:501-508. DOI: 10.1016/j.ijid.2020.10.069.

25. Smith MA, Marinaki AM, Arenas M, et al. Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease. Aliment Pharmacol Ther. 2009;30(4):375–384. DOI:10.1111/ J.1365-2036.2009.04057.X.

26. Beedham C. Aldehyde oxidase; new approaches to old problems. Xenobiotica. 2020;50(1):34–50. DOI:10.1080/00498254.2019.1626029.

27. Stavropoulou E, Pircalabioru GG, Bezirtzoglou E. The Role of Cytochromes P450 in Infection. Front Immunol. 2018;9:89. DOI:10.3389/fimmu.2018.00089.

28. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–438. DOI:10.1038/clpt.2008.302.

29. Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee S-S, Agoramoorthy G. COVID-19: Consider IL-6 receptor antagonist for the therapy of cytokine storm syndrome in SARS-CoV-2 infected patients. J Med Virol. 2020;92(11):2260–2262. DOI:10.1002/jmv.26078.

30. Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–1693. DOI:10.1124/dmd.107.015511.

31. Jover R, Bort R, Gómez-Lechón MJ, Castell J V. Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J. 2002;16(13):1799–1801. DOI:10.1096/fj.02-0195fje.

32. Strafella C, Caputo V, Termine A, et al. Investigation of Genetic Variations of IL6 and IL6R as Potential Prognostic and Pharmacogenetics Biomarkers: Implications for COVID-19 and Neuroinflammatory Disorders. Life (Basel, Switzerland). 2020;10(12):351. DOI:10.3390/life10120351.


Review

For citations:


Temirbulatov I.I., Kryukov A.V., Sychev D.A. Pharmacogenetics of antiviral agents for the treatment of COVID-19. Pharmacogenetics and Pharmacogenomics. 2021;(1):38-41. (In Russ.) https://doi.org/10.37489/2588-0527-2021-1-38-41

Views: 430


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2588-0527 (Print)
ISSN 2686-8849 (Online)