Relevance of creating a personalized approach to stimulation of superovulation in vitro fertilization programs
https://doi.org/10.24411/2588-0527-2019-10037
Abstract
About the Authors
A. V. LapshtaevaRussian Federation
Lapshtaeva Anna – MD, PhD, lecturer of department of immunology, microbiology and virology.
Saransk
T. J. Eremkina
Russian Federation
Eremkina Tatyana – student of medical institute.
Saransk
I. V. Sychev
Russian Federation
Sychev Ivan – graduate student of department of faculty therapy with courses of physiotherapy, physiotherapy.
Saransk
References
1. Harlow SD, Campbell OM. Epidemiology of menstrual disorders in developing countries: a systematic review. BJOG. 2004;111(1):6-16. DOI: 10.1111/j.1471-0528.2004.00012.x
2. Abashidze AA, Arakelyan VF. Tubo-peritoneal infertility and laparoscopy. Relevance of the problem. Akusherstvo, ginekologiya i reproduktsiya. 2016;10(2):77–79. (In Russ). DOI:10.17749/2313-7347.2016.10.2.077-079
3. Rusanova NE. Vspomogatel’nye reproduktivnye tekhnologii v Rossii: istoriya, problemy, demograficheskie perspektivy. Zhurnal issledovanii sotsial’noi politiki. 2013;11(1):69–87. (In Russ).
4. Korsak VS, Smirnova AA, Shurygina OV. Registr tsentrov VRT v Rossii. Otchet za 2014 god. Problemy reproduktsii. 2016;22(5):10–21. (In Russ).
5. Korsak VS, Smirnova AA, Shurygina OV. Registr tsentrov VRT v Rossii. Otchet za 2015 god. Problemy reproduktsii. 2017;23(5):8–22. (In Russ).
6. Loutradis D, Vomvolaki E, Drakakis P. Poor responder protocols for in-vitro fertilization: options and results. Current opinion in gynecology and obstetrics. 2008;20(4):374–378. DOI:10.1097/gco.0b013e328305b9b8
7. Venetis C, Kolibianakis E, Tarlatzi T, Tarlatzis B. Evidence-based management of poor ovarian response. Ann N Y Acad Sci. 2010;1205(1): 199–206. DOI:10.1111/j.1749-6632.2010.05665.x
8. Andreeva MG. Optimizatsiya iskhodov programmy vspomogatel’nykh reproduktivnykh tekhnologii na osnovanii personifitsirovannogo naznacheniya protokolov stimulyatsii superovulyatsii [dissertation] Moscow: 2006. (In Russ).
9. Chan W. The ‘ART’ of thrombosis: a review of arterial and venous thrombosis in assisted reproductive technology. Current Opinion in Obstetrics and Gynecology. 2009;21(3):207-218. DOI:10.1097/gco.0b013e328329c2b8
10. Lazaros L, Xita N, Hatzi E, et al. CYP19gene variants affect the assisted reproduction outcome of women with polycystic ovary syndrome. Gynecological Endocrinol. 2013;29(5):478–482. DOI:10.3109/09513590.2013.774359
11. Man BL, Hui AC. Cerebral venous thrombosis secondary to ovarian hyperstimulation syndrome. Hong Kong Med. J. 2011;17(2):155-156.
12. Jing Z, Yanping L. Middle cerebral artery thrombosis after IVF and ovarian hyperstimulation: a case report. Fertil Steril. 2011;95(7):2435.e132435.e15. DOI:10.1016/j.fertnstert.2011.04.002
13. Karimi Zarchi М, Rouhi М, Abdolahi АH, Hekmatimoghaddam S. The effect of assisted reproductive technologies on gynecological cancer: report of our experiences and literature review. International Journal of Biomedical Science. 2013;9(3):129–134.
14. Von Horn K, Depenbusch M, Schultze-Mosgau A, Griesinger G. Krebsrisiko nach ovarieller Stimulation. Gynäkologische Endokrinologie. 2014;12(3):162–166. DOI:10.1007/s10304-013-0626-7
15. Dedov II, Tyul’pakov AN, Chekhonin VP, et al. Personalized medicine: State-of-the-art and prospects. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2012;67(12):4–12. (In Russ).
16. Karabekova BA. Personalized medicine. The path to effective and safe pharmacotherapy. Nauka, tekhnika i obrazovanie. 2018;3(44):66–68. (In Russ).
17. Kukes VG, Sychev DA, Al’-Akhmad Feisal, Dmitriev VA. Computer-based inventory control of medicines at public pharmacies. Vestnik Roszdravnadzora. 2011;6:59–63. (In Russ).
18. Kukes VG, Sychev DA, Ramenskaya GV, Ignat’ev IV. Farmakogenetika sistemy biotransformatsii i transporterov lekarstvennykh sredstv: ot teorii k praktike. Biomeditsina. 2007;1:29–47. (In Russ).
19. Shpakov AO. Gonadotropiny – ot teorii k klinicheskoi praktike. Sankt-Peterburg: POLITEKh-PRESS; 2018. (In Russ).
20. Bashmakova NV, Mazurov DO, Chermyaninova OV, Kozhekina YuN. Efficacy and Safety of Follitropin Preparations in In-Vitro-Fertilization Cycles. Doktor.Ru. 2015;11(112):17–21. (In Russ).
21. Beketova AN, Krasnopol’skaya KV, Nazarenko TA, Kabanova DI. Urinary and recombinant gonadotropins in IVF (a review). Problemy reproduktsii. 2014;20(3):45–52. (In Russ).
22. Al-Inany HG, Youssef MA, Ayeleke RO, at al. Gonadotrophinreleasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev. 2016; 29(4):CD001750. DOI:10.1002/14651858.cd001750.pub4
23. Orvieto R, Patrizio P. GnRH agonist versus GnRH antagonist in ovarian stimulation: an ongoing debate. Reprod Biomed Online. 2013;26(1):4–8. DOI:10.1016/j.rbmo.2012.11.001
24. Rabinson J, Meltcer S, Zohav E, et al. GnRH agonist versus GnRH antagonist in ovarian stimulation: the influence of body mass index on in vitro fertilization outcome. Fertil Steril. 2008;89(2):472–474. DOI:10.1016/j.fertnstert.2007.03.007
25. Berkkanoglu M, Ozgur K. What is the optimum maximal gonadotropin dosage used in microdose flare-up cycles in poor responders? Fertil Steril. 2010;94(2):662–665. DOI:10.1016/j.fertnstert.2009.03.027
26. Alama P, Bellver J, Vidal C, Giles J. GnRH Analogues in the Prevention of Ovarian Hyperstimulation Syndrome. International journal of endocrinology and metabolism. 2013;11(2):107–116. DOI:10.5812/ijem.5034
27. Gianaroli L, Racowsky C, Geraedts J, at al. Best practices of ASRM and ESHRE: a journey through reproductive medicine. Human Reproduction. 2012;27(12):3365–3379. DOI:10.1093/humrep/des338
28. Homburg R, Insler V. Ovulation induction in perspective. Hum Reprod Update. 2002;8(5):449–462. DOI:10.1093/humupd/8.5.449
29. Cole L. The hCG assay or pregnancy test. Clin Chem Lab Med. 2012;50(4):617–630. DOI:10.1515/cclm.2011.808
30. Casarini L, Pignatti E, Simoni M. Effects of polymorphisms in gonadotropin and gonadotropin receptor genes on reproductive function. Rev Endocracy Disord. 2011;12(4):303–321. DOI:10.1007/s11154-011-9192-2
31. Krasnopol’skaya KV, Nazarenko TA. Klinicheskie aspekty lecheniya besplodiya v brake. Moscow: GEOTAR-Media; 2013. (In Russ).
32. Siristatidis CS, Gibreel A, Basios G, at al. Gonadotrophin-releasing hormone agonist protocols for pituitary suppression in assisted reproduction. Cochrane Database Syst Rev. 2015;9(11): D006919. DOI:10.1002/14651858.cd006919.pub4
33. Guengerich FP. Human cytochrome P450 enzymes. In: Paul R. Ortiz de Montellano editors. Cytochrome P450: Structure, Mechanism, and Biochemistry. Kluwer Academic: Plenum Press; 2005. р. 377–531.
34. Chernyak YuA, Kolesnikov SI, Chernyak EV. Tsitokhrom R450: osnovnye predstavleniya, metody issledovaniya, znachenie dlya prakticheskoi meditsiny. – 2-e izdanie, ispravlennoe. – Irkutsk: Izdatel’stvovo IGU; 2014. (In Russ).
35. Artymuk NV, Gulyaeva LF, Zotova OA, Khvostova EP. The role of polymorphisms genes of detoxification of xenobiotics in the development of endometriosis. Zhurnal akusherstva i zhenskikh boleznei. 2012;61(6): 18–24. (In Russ).
36. Stupko EE, Shenin VA, Kolesnikova LI, et al. The role of polymorphisms genes of detoxification of xenobiotics in the development of endometriosis and hysteromioma in women. Siberian Medical Journal. 2011;104(5):5–8. (In Russ).
37. Levy G, Lucidi RS. Thrombophilia and ovarian hyperstimulation syndrome: a case report. Hawaii medical journal. 2011;70(5):97–98.
38. Liehr JG, Ricci MJ. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci USA. 1996;93(8):3294–3296. DOI:10.1073/pnas.93.8.3294
39. Rogan EG, Badawi AF, Devanesan PD, et al. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis. 2003;24(4):697—702. DOI:10.1093/carcin/bgg004
40. Chang TK, Chen J, Yang G, Yeung EY. Inhibition of procarcinogenbioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res. 2010;48(1):55–64. DOI:10.1111/j.1600-079x.2009.00724.x
41. Fitzpatrick SL, Richards JS. Regulation of cytochrome P450 aromatase messenger ribonucleic acid and activity by steroids and gonadotropins in rat granulosa cells. Endocrinology. 1991;129(3):1452–1462. DOI:10.1210/endo-129-3-1452
42. Sergentanis TN, Economopoulos KP. Four polymorphisms in cytochrome P4501A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 2010; 122(2):459–469. DOI:10.1007/s10549-009-0694-5
43. Kamat A, Hinshelwood MM, Murry BA, Mendelson CR. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends Endocrinol Metab. 2002;13(3):122–128. DOI:10.1016/s1043-2760(02)00567-2
44. El-Shennawy GA, Elbialy AA, Isamil AE, El Behery MM. Is genetic polymorphism of Er-, CYP1A1, and CYP1B1 a risk factor for uterine leiomyoma? Arch. Gynecol. Obstet. 2011;283(6):1313–1318. DOI:10.1007/s00404-010-1550-x
45. Berstein LM, Imyanitov EN, Kovalevskij AJ, et al. CYP17 and CYP19 genetic polymorphisms in endometrial cancer: association with intratumoral aromatase activity. Cancer Lett. 2004;207(2):191–196. DOI:10.1016/j.canlet.2004.01.001
46. Stratakis CA, Vottero A, Brodie A, et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J Clin Endocrinol Metab. 1998;83(4):1348–1357. DOI:10.1210/jc.83.4.1348
47. Xita N, Lazaros L, Georgiou I, Tsatsoulis A. CYP19 gene: a genetic modifier of polycystic ovary syndrome phenotype. Fertil Steril. 2010;94(1): 250–254. DOI:10.1016/j.fertnstert.2009.01.147
48. Haiman CA, Hankinson SE, Spiegelman D, et al. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. Int J Cancer. 2000;87(2):204–210. DOI:10.1002/1097-0215(20000715)87:2<204::aid-ijc8>3.3.co;2-v
49. Lazaros LA, Hatzi EG, Xita NV, et al. Aromatase (CYP19) gene variants influence ovarian response to standard gonadotrophin stimulation. J Assist Reprod Genet. 2012;29(2):203–209. DOI:10.1007/s10815-011-9673-y
50. Altmäe S, Haller K, Peters M, et al. Aromatase gene (CYP19A1) variants, female infertility and ovarian stimulation outcome: a preliminary report. Reprod Biomed Online. 2009;18(5):651–657. DOI:10.1016/s1472-6483(10)60009-0
51. Bedaiwy MA, Mousa NA, Esfandiari N, et al. Follicular phase dynamics with combined aromatase inhibitor and follicle stimulating hormone treatment. J Clin Endocrinol Metab. 2007;92(3):825–833. DOI:10.1210/jc.2006-1673
52. Baghaei F, Rosmond R, Westberg L, et al. The CYP19 gene and associations with androgens and abdominal obesity in premenopausal women. Obes Res Clin Pract. 2003;11(4):578–585. DOI:10.1038/oby.2003.81
53. Zhang XL, Zhang CW, Xu P, et al. SNP rs2470152 in CYP19 is correlated to aromatase activity in Chinese polycystic ovary syndrome patients. Mol Med Rep. 2012;5(1):245–249. DOI:10.3892/mmr.2011.616
54. Tal R, Seifer D. Disparities between black and white women in assisted reproductive technology. In: Sharara FI; editors. Ethnic Differences in Fertility and Assisted Reproduction. Springer; 2013. р. 73–83.
55. Shohat-Tal A, Sen A, Barad D et al. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol. 2015;11(7):429–441. DOI:10.1038/nrendo.2015.64
56. Fischer M, Knoll M, Sirim D, at al. The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics. 2007;23(15):2015–2017. DOI:10.1093/bioinformatics/btm268
57. Afanas’eva NA, Khvostova EP, Pustyl’nyak VO, et al. Analysis of genetic polymorphisms in estrogen metabolizing enzymes in ovarian cancer patients in the Siberia region. Molekulyarnaya meditsina. 2013;1:16–19. (In Russ).
58. Weston A, Pan CF, Bleiweiss IJ, еt al. CYP17 genotype and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7(10):941–944.
59. Ambrosone CB, Moysich KB, Furberg H, et al. CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors. Breast Cancer Res. 2003;5(2):R45-51. DOI:10.1186/bcr570
60. Chakraborty A, Murthy NS, Chintamani C, et al. CYP17 gene polymorphism and its association with high-risk north Indian breast cancer patients. J Hum Genet. 2007;52(2):159–165. DOI:10.1007/s10038-006-0095-0
61. Haiman CA, Hankinson SE, Spiegelman D, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. Cancer Res. 1999;59(5):1015–1020.
62. Bianchi PH, Gouveia GR, Costa EM, et al. Successful live birth in a woman with 17alphahydroxylase deficiency through IVF frozen thawed embryo transfer. J Clin Endocrinol Metab. 2016;101(2):345–348. DOI:10.1210/jc.2015–3201
63. Amaro A, Polerá D, Figueiredo F, at al. The Impact of Variants in Genes Associated with Estradiol Synthesis on Hormone Levels and Oocyte Retrieval in Patients Who Underwent Controlled Ovarian Hyperstimulation. Genet Test Mol Biomarkers. 2019;23(2):145–149. DOI:10.1089/gtmb.2018.0205
64. Chung BC, Guo IC, Chou SJ. Transcriptional regulation of the CYP11A1 and ferredoxin genes. Steroids. 1997;62(1):37–42. DOI:10.1016/s0039-128x(96)00156-0
65. Chang GW, Kam PC. The physiological roles of cytochrome P450 isoenzymes. Anaesthesia. 1999;54(1):42–50. DOI:10.1046/j.1365-2044.1999.00602.x
66. Hu MC, Hsu NC, El Hadj NB, et al. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Molecular Endocrinology. 2002;16(8):1943–1950. DOI:10.1210/me.2002-0055
67. Kim CJ, Lin L, Huang N, et al. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2008;93(3):696–702. DOI:10.1210/jc.2007-2330
68. Altme S, Hovatta O, Stavreus-Evers A, Salumets A. Genetic predictors of controlled ovarian hyperstimulation: where do we stand today? Hum Reprod Update. 2011;17(6):813–828. DOI:10.1093/humupd/dmr034
69. Sukhikh GT, Biryukova AM, Nazarenko TA, et al. Analysis of the associations of gene polymorphisms with polycystic ovary syndrome and endocrine and metabolic disturbances. Akusherstvo i ginekologiya. 2011;5:15–22. (In Russ).
70. Gharani N, Waterworth DM, Batty S, et al. Association of the steroid synthesis gene CYP 11a with polycystic syndrome and hyperandrogenism. Hum Mol Genet. 1997;6(3):397–402. DOI:10.1093/hmg/6.3.397
71. Ji M, Kim K, Lee W, et al. Genetic Polymorphism of CYP2D6 and Clomiphene Concentrations in Infertile Patients with Ovulatory Dysfunction Treated with Clomiphene Citrate. J Korean Med Sci. 2016;31(2):310. DOI:10.3346/jkms.2016.31.2.310
72. Mahran A, Abdelmeged A, El-Adawy AR, et al. The predictive value of circulating anti-Müllerian hormone in women with polycystic ovarian syndrome receiving clomiphene citrate: a prospective observational study. J Clin Endocrinol Metab. 2013;98(10):4170–4175. DOI:10.1210/jc.2013-2193
73. Kim J, Yi G, Kim Y et al. Association between serum anti-Müllerian hormone level and ovarian response to mild stimulation in normoovulatory women and anovulatory women with polycystic ovary syndrome. Clin Exp Reprod Med. 2013;40(2):95. DOI:10.5653/cerm.2013.40.2.95
Review
For citations:
Lapshtaeva A.V., Eremkina T.J., Sychev I.V. Relevance of creating a personalized approach to stimulation of superovulation in vitro fertilization programs. Pharmacogenetics and Pharmacogenomics. 2019;(1):17-24. (In Russ.) https://doi.org/10.24411/2588-0527-2019-10037